Speciation and isotopic composition of plutonium in the groundwater at the DOE Hanford Site

K.O. Buesseler(1), M.H. Dai(1) and J.M. Kelley(2), S. Pike(1), R. Nelson(1), S. Goodwin(2) and J.F. Wacker(2)

(1) Woods Hole Oceanographic Institution, Woods Hole, MA 02543
(2) Pacific Northwest National Lab, Richland, WA 99352

EMSP #DOE DE- FG07- 96ER14733
Project #70132
Talk Outline

- Research Objectives
 What do we know (or need to know) to understand Pu mobility in groundwater

- Research Status
 Techniques used to study Pu speciation, mobility and fate: lab & field work

- Results from Hanford 100K area
- Linkage to the Hanford Site needs
- Longer term goals, R&D transition and relevance to DOE
Research Objectives

1. Determination of the speciation of Plutonium in groundwater at the Hanford Site
 ⇒ oxidation state determinations
 ⇒ particulate, colloidal & dissolved phase distributions
 ⇒ Pu isotopics- source information

2. Characterization of groundwater colloids
 ⇒ organic/ inorganic properties

3. Use field data to predict transport rate and fate of actinides in groundwater

Status: Objective #1 well underway, #2 & #3 to be completed in years 2 & 3 of proposal
Pu migration hypothesis

Pu oxidation states control Pu solubility

Typical groundwater is reducing

Low valence states expected in groundwater hence higher K_d

Field results: Pu migrates farther than predicted

e.g. Kersten et al., 1999

Pu associate with colloids that move with water flow

Evidence of high colloid abundances

Potential Problems:
1. Lack of in-situ oxidation states data - what is Pu speciation?
2. Colloid abundances may be biased by high flow rate groundwater sampling techniques
Groundwater sampling and processing

Well water

In-line multiprobe (O₂, pH, turbidity etc.)

Micro-purge & Low-flow rate pumping (100-200 ml/min)

Unfiltered

0.2 µm prefiltration

On-site Cross-flow ultrafiltration

Permeate (<1 kD)

Retentate (> 1 kD)

On-site oxidation state separations

Oxidized and reduced forms

Pu Isotopic composition with TIMS

N₂ purged and sealed
Field Sampling at Hanford Site

- maintain and measure in-situ geochemistry
- use low flow sampling to reduce colloid formation
Cross Flow Filtration

Sample line
- 0.2 µm prefiltre
- Retentate reservoir (>1 kD)
- N₂ flushed
- ultra clean
- 200 liter samples in 48 hours

Permeate stream (<1 kD)
- 1 kD CFF membranes

• maintain redox state & keep trace metal clean
• demonstrate low sorptive losses and negligible blanks
• calibrate CFF
Issues important for accurate Pu speciation studies

- Redox speciation studies
 - performed immediately in field under nitrogen gas
 - lanthanium fluoride ppt w/ 244Pu and 242Pu spikes

- Radiochemical purification (WHOI)
 - careful attention to blanks & yields prior to TIMS

- Thermal Ionization Mass Spectrometry (PNNL)
 - subfemtogram detection limits ($<10^{-15}$ gm or 10^6 atoms)
 - use 240Pu/239Pu and 241Pu/239Pu to determine Pu
Hanford 100-K area sampling sites

- Oct. 1997 site survey at 6 wells
- April 1999 8 wells sampled with speciation studies at 4
Pu found in all groundwater samples from 100K area- low levels (fg/l, 10^{-4} to 10^{-6} pCi/l)

Colloidal Pu is minor fraction of total Pu in groundwater- <5-15% colloidal
• The likely source of high $^{241}\text{Pu}/^{239}\text{Pu}$ in wells K-109A and K-27 is N-reactor waste (the K-East reactor basin is currently being used to store irradiated fuel from the N-reactor).
• The isotopic ratio in the other wells reflects the K-reactor signal, possibly mixed with fallout.
Well 36 110A 27 32A

% oxidized 239Pu

Oxidation state results: filtrate (<0.2 μm)

- Pu is primarily in reduced form with a trend towards more oxidized forms downstream
Linkage to Hanford Site Needs

- This study provides actinide speciation data for accurate modeling, assessment and prediction of the fate of Pu released into groundwater at Hanford.

- We can identify Pu sources & groundwater migration patterns at Hanford:

 100K- K & N reactor sources
 Total levels quite low
 More than an order-of-magnitude reduction in concentration between reactor and Columbia river
EMSP relevance and R&D strategies

- Accurate in-situ speciation data needed for validation, verification and long-term monitoring of containment and treatment

- In-situ manipulation of groundwater redox states possible in order to reduce mobility or enhance extraction possibilities

- Current models are severely data limited wrt actinide speciation & considerable in-situ variability is possible

 ⇒ *No evidence of enhanced transport due to colloids*

 ⇒ *Oxidized forms of Pu in groundwater must be considered*
Future Work

- Finish actinide work on 1999 Hanford samples
 \textit{Pu} isotopes plus some \textit{Np}, \textit{U}
- New samples to be collected in 2000-2001
 \textit{Groundwater at 100N} & \textit{200E}
 Comparison of two sites with contrasting sources
 and different vadose zone residence times
- Colloid characterization
 \textit{Organic} & \textit{inorganic properties}
- Groundwater speciation & transport models

Acknowledgements

\textbf{WHOI:} John Andrews
\textbf{Hanford Site:} Evan Dresel, Scott Conley, Teresa Wilson, Debi Morgan, Mike Thomson, Stuart Luttrell, Loni Peurrung, Dennis Brooks