Heterotrophic Bacterial Production

Benjamin Van Mooy
Cruise prep, rad logistics, DNA precipitation (ALOHA), data analysis

Karen Casciotti, Carl Lamborg
Incubations (ALOHA)

Philip Boyd
Incubations, DNA precipitation (K2)
Thymidine incorporation rates

1. add 3H-thymidine
2. incubate
3. precipitate DNA by TCA/filtration
4. radioactivity by scint. counting

Thymidine Incorporation Rate

3H-thymidine precursor of thymine (i.e. “T”)
Thymidine incorporation rates

\[b_{100} = -1.1 \]
Thymidine incorporation rates

\[b_{100} = -1.2 \]
Thymidine incorporation rates
Heterotrophic bacterial production rates

Estimated conversion factors

\[\text{Thymidine Incorporation Rate} \times \frac{\text{cell}}{\text{thymidine}} \times \frac{\text{g carbon}}{\text{cell}} = \text{Carbon Incorporation Rate}\]

\[\pm 30\%\]

Disclaimer: thymidine and leucine incorporation rates may underestimate bacterial production rates, particularly in gyres.
Heterotrophic bacterial production rates
Heterotrophic bacterial production rates

<table>
<thead>
<tr>
<th></th>
<th>mg C l(^{-1}) d(^{-1})</th>
<th>(\text{BP}_{50\text{m}}) (mg C m(^{-2}) d(^{-1}))</th>
<th>(\text{PP}_{50\text{m}}) (mg C m(^{-2}) d(^{-1}))</th>
<th>BP:PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALOHA</td>
<td>28 ± 9</td>
<td>197 ± 29</td>
<td>0.14 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>23 ± 10</td>
<td>467 ± 123</td>
<td>0.05 ± 0.03</td>
<td></td>
</tr>
</tbody>
</table>