Determination of particulate and dissolved 228Th in seawater using a delayed coincidence counter

Kanchan Maiti $^{a,b,⁎}$, Matthew A. Charette b, Ken O. Buesseler b, Kuanbo Zhou b, Paul Henderson b, Willard S. Moore c, Paul Morris b, Lauren Kipp b

a Department of Oceanography and Coastal Sciences Louisiana State University, Baton Rouge, LA 70803, USA
b Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
c Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA

ABSTRACT

The application of thorium-228 towards understanding particle dynamics in the open ocean is limited because of its low natural abundance in seawater and associated sampling and analytical challenges. Here we describe a fast and non-destructive method for measuring both dissolved and particulate 228Th activities in the open ocean using Radium Delayed-Coincidence Counters (RaDeCC). Particulate and dissolved samples were collected from the upper 1000 m of the Sargasso Sea water column during the US GEOTRACES intercalibration cruise using large volume in-situ pumps equipped with Quartz microfiber filters and MnO$_2$ impregnated cartridges. Samples were directly counted on the RaDeCC system using a custom machined filter sample holder and a commercially available cartridge holder followed by traditional alpha counting. The two methods were found to be in good agreement ($r^2 = 0.95$). We also applied this method to particulate and dissolved samples collected from a US GEOTRACES station near the Cape Verde islands. The particulate and dissolved 228Th distributions were consistent with the expected pattern of upper ocean scavenging and removal of 228Th with activities varying between 0.02 and 0.06 dpm 100 L$^{-1}$ (particulate) and 0.04 and 0.65 dpm 100 L$^{-1}$ (dissolved) over the upper 1000 m of the water column.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Within the ocean, particle formation and dissolution play a critical role in the cycling of many natural and anthropogenically produced elements that affect biological production, human health and even Earth’s climate. A number of naturally occurring short-lived radioisotopes including 234Th, 228Th, and 210Pb have been used as tracers for understanding particle cycling processes in the marine system. 234Th ($t_{1/2} = 24.1$ days), produced by the radioactive decay of its conservative parent 238U ($t_{1/2} = 4.47 \times 109$ years), has been widely used as a tracer of particle flux in the upper ocean. Unlike its parent, 234Th is highly particle reactive thus the disequilibrium between 238U and 234Th provides an estimate of the net rate of particle export from the upper ocean on time scales of days to weeks (Buesseler et al., 1998).

The application of 234Th–238U disequilibrium to particle dynamics in the mesopelagic or “twilight zone” (~100–1000 m) is limited due to the relatively short half-life of 234Th. This zone forms an important connection between the upper and deep ocean, yet the processes that control material export across the mesopelagic are not well understood (Buesseler et al., 2008). 228Th ($t_{1/2} = 1.9$ years), which is produced in situ by the decay of its parent 228Ra ($t_{1/2} = 5.8$ years), has shown promise as a tracer of particle and POC fluxes in deeper layers (Luo et al., 1995; Okubo et al., 2007). The disequilibria between this parent–daughter isotope pair can also provide estimates of particle export integrated over longer (months–annual) time scales.

While a recent small volume technique for 234Th measurements (Buesseler et al., 2001; Benitez-Nelson et al., 2001; Pike et al., 2005) has led to higher sample throughput and widespread application of this isotope, methodologies for measuring 228Th in seawater have largely remained unchanged for the past several decades (Cochran et al., 1987, 2000; Baskaran et al., 2009). However 228Th can provide important information on processes such as (i) particle cycling e.g. aggregation/disaggregation (Bacon and Anderson, 1982; Cochran et al., 1995, 2000; Marchal and Lam, 2012), (ii) variability in POC export (Luo et al., 1995; Okubo et al., 2007; Lepore and Moran, 2007; Trimble et al., 2004), and (iii) lateral advection of coastal water masses (Rutgers van der Loeff et al., 2012), when measured in conjunction with other thorium isotopes.

The application of 228Th towards understanding particle dynamics in the open ocean has been hampered by sampling and analytical challenges. The major challenge associated with measuring 228Th in the open ocean is its low activity in seawater (2–3 orders of magnitude...
lower than 234Th), both on particles and in the dissolved phase. This would normally require large volume water samples (~1000 L) followed by time consuming and labor intensive chemical purification procedures required for alpha spectrometry. In this study we describe a rapid, less labor intensive method to non-destructively measure both particulate and dissolved 228Th in marine systems. The method utilizes the RaDeCC system (Moore and Arnold, 1996), which involves alpha scintillation counting of the 228Th granddaughter 220Rn. A combination of laboratory-prepared standards and field samples associated with the US GEOTRACES program was used to verify the technique (http://www.ldeo.columbia.edu/res/pi/geotraces/).

2. Analytical methods

The method utilizes the RaDeCC system, which is being widely used to determine 224Ra and 223Ra in seawater (Moore and Arnold, 1996; Moore, 2008). Briefly, a RaDeCC system consists of a photomultiplier tube (PMT) attached to a large Lucas (alpha scintillation) cell. The samples (usually radium adsorbed to MnO$_2$ coated acrylic fiber) are placed in a holding chamber and helium gas, which carries the Rn daughters (220Rn, 219Rn) is pumped along a closed loop through the scintillation cell and back through the holding chamber. Decay of the Rn and Po daughters in the Lucas cell produces alpha particles that interact with the scintillator to produce light pulses. These signals are amplified by the PMT and processed with a delayed coincidence circuit, which discriminates the decay of the 220Rn and 219Rn daughters. In addition to distinguishing 220Rn and 219Rn, another major advantage of this system is the low background level, which allows counting of samples with low activity. The RaDeCC systems used for this work have an average background of 0.022 cpm after correcting for chance coincidence events in this register.

Similar RaDeCC techniques have been used to determine sedimentary 224Ra-228Th disequilibria as a means to quantify the 224Ra flux across the sediment–water interface in coastal sediments (Cai et al., 2012, 2014). For the present work, we focused on utilizing the RaDeCC system to measure water column dissolved and particulate 228Th to understand particle fluxes in the mesopelagic zone (Maiti et al., 2012). The holding chambers used for counting particles on 142-mm diameter filters were manufactured in-house (Fig. 1A), while the dissolved samples were housed in a commercially available (Cole-Parmer Catalog # T-29650-00; Fig. 1B) water filtration cartridge holder that can accommodate 5 inch MnO$_2$ cartridges (Henderson et al., 2013).

For the initial method development, samples were collected from two water column profiles at BATS (Bermuda Atlantic Time Series station) on the R/V Atlantic Explorer in September 2009. Both dissolved and particulate samples were collected from the upper 1000 m of the water column using battery operated in situ pumps (McLane pumps). Particulate samples were collected on 142-mm diameter micro quartz filters (Whatman QMA; nominal pore size 1.0 um) while dissolved thorium was scavenged onto MnO$_2$ coated 3 M grooved acrylic cartridges (Henderson et al., 2013) by pumping 800–1000 L water samples per depth at 6 L/min. All samples were stored for a month before being counted, in order to allow time for 224Ra ($t_{1/2} = 3.66$ days) to achieve secular equilibrium with 228Th. A background measurement is performed before every sample analysis and a running average is used to background correct all field samples. Other corrections include chance coincidence counts and cross-talk between the 220 and 219 channels as described in Moore and Arnold (1996) and Garcia-Solsona et al. (2008).

2.1. Particulate samples

A custom made PVC holding chamber was used to accommodate 142 mm filters for particulate 228Th analysis. The chamber was designed with an inner height of 15.0 mm and diameter of 150 mm (internal volume of 265 cm3) such that the filter can be laid flat and face up. It has one outlet and three inlets, which are designed to provide even flow of the He carrier gas across the surface of the filter (Fig. 1A).

Since the RaDeCC system measures 220Rn produced by decay of 224Ra, it must be demonstrated that Rn is released consistently from the sample matrix. The emanation of 220Rn from the acrylic MnO$_2$ fiber is a function of the recoil range of 220Rn on the fiber surface and can be modulated by the addition of water to the sample (Sun and Torgersen, 1998). To quantify this effect for marine particles on a depth filter such as the QMA, three samples from the upper 1000 m at Bermuda were completely dried and counted for 1000 min on the RaDeCC system. The filters from 60 m (chlorophyll max), 120 m (within euphotic zone) and 750 m (deep) were chosen to simulate varying particle concentrations. In order to measure the filters in a consistent manner, all the filters were oven dried and stored for a month to allow time for 224Ra ($t_{1/2} = 3.4$ days) reach secular equilibrium with 228Th. The same filters were recounted after adding 5 mL, 10 mL and 20 mL deionized water to the filter to produce water/sample ratios of 3.7, 7.4 and 11.1 (g/g) respectively. Filters were completely dried between each counting period (Fig. 2). The data indicates that peak counting efficiency occurred with 5 mL water, with significant alpha recoil suppression at 20 mL. All future samples were wetted with 5 mL deionized water (evenly distributed across the filter surface) and counted for 1000–1200 min on RaDeCC. For samples from the North Atlantic Ocean, this produced particulate 228Th data with uncertainties of no greater than ~15% (1 sigma) or lower in the case of upper ocean, particle-rich samples.

2.2. Dissolved samples

Dissolved 228Th samples of varying activities were collected at BATS on MnO$_2$ coated acrylic cartridges via in situ pumps described in

![Fig. 1. Holding chambers for particulate (A) and dissolved (B) 228Th samples used with the RaDeCC system.](image-url)
Henderson et al. (2013). The cartridges were rinsed with 500 mL of de-ionized water and allowed to drip dry for 6 h. Once installed in their filter-holder, they were air dried with compressed air until the disappearance of large water droplets from the outlet, which corresponds to a moisture content of approximately 30% of the cartridge weight (Henderson et al., 2013). The cartridges were then directly counted inside the above mentioned cartridge holders connected to the RaDeCC system for 240–360 min, which resulted in 1 sigma counting errors of less than 10%. Ingrowth corrections were applied to 234Th measurements based on 228Ra activities measured via gamma spectroscopy.

Once the activity on the MnO2 cartridge is known, determination of dissolved 228Th activity and its parent 228Ra in the water column involves additional corrections for the efficiency of Th and Ra uptake under in situ conditions by the MnO2 cartridges. Thus the application of this method requires independent small volume samples for 234Th measurements. Based on 228Ra activities measured via gamma spectroscopy. The ratio between the two determines the extraction efficiency of 228Th and 226Ra on a single cartridge.

Immediately after the initial sample counting on the RaDeCC system, the cartridges are ashed at 820 °C and then counted via gamma spectroscopy for 234Th and 226Ra. The corresponding dissolved 234Th activity was determined by collecting a 4 L water sample and subsequent beta counting (Pike et al., 2005). Thorium was extracted from the final elution using a solution of 0.25 M TTA (Thenoyl trifluoroacetone) in benzene, evaporated on a stainless steel planchette (Li et al., 1980), and counted on a calibrated silicon surface barrier alpha spectroscopy system. If the two techniques are measuring 228Th in the same phase, the slope of a linear regression between sample counts per minute (cpm) on the RaDeCC system and the corresponding activity in dpm determined via alpha spectroscopy will provide a measure of the apparent RaDeCC detector efficiency for filters counted in this sample geometry (Fig. 3). For two RaDeCC systems, the results indicate a detector efficiency of 0.23 ± 0.02 and 0.27 ± 0.03. While the 3% difference between detectors is typical for different RaDeCC systems, the overall efficiency is much lower than that expected for RaDeCC determination of 228Th bound to MnO2 fiber.

To determine the efficiency for the filter geometry directly in the RaDeCC system, we spiked a filter collected at 1200 m (14.00°N, 99.00°E) during GEOTRACES East Pacific zonal transect that had an estimated POC concentration of 0.137 μM and an initial 228Th activity of 0.006 dpm 100 L⁻¹ with the 232Th standard solution. The filter was spiked in a series of 4 additions ranging from 0.15 to 6.65 dpm and was prepared for analysis in the same manner as samples and analyzed on two of our RaDeCC detectors after each spike addition. After correcting for the filter blank, the average efficiencies for the two detectors were 0.34 ± 0.03 and 0.36 ± 0.04 respectively. However, we reanalyzed the filter standard approximately one month after preparation and found a 15–28% decrease of the initial efficiency. This is in
2.3.2. Dissolved 228Th

Contrast to 232Th,228Ra,228Th standards prepared on Mn-fibers (Moore, 2008; Scholten et al., 2010) and standards prepared by depositing MnO$_2$, or coastal sediments onto glass fiber filters (Cai et al., 2012; Moore and Cai, 2013). None of these techniques showed a decrease in activity with time. Because the spike is in an acid solution, a small amount of acid is being added to the filter as a part of the spike solution. During drying the strength of the acid in contact with material on the filter increased. It is likely that this acid caused some of the particles on the filter to dissolve, neutralizing the acid. Subsequent additions of MilliQ to the filter may then have caused this material to precipitate, and capture some of the spiked Th. Radon produced by the decay of the captured Th would not be able to reach the detector when the filter was run again, thus lowering the apparent efficiency. To test this hypothesis, 2 mL of 3 M HNO$_3$ was added to the filter standard that had shown a decrease in activity. The filter was dampened with 4 mL MilliQ, and the damp filter was allowed to sit for 48 h before adding 3 mL of MilliQ to bring the moisture content back to the appropriate level. The efficiencies measured after this addition of acid were found to be similar to the initial values, suggesting that precipitation of Th did cause the decrease in efficiency and that the original measurements reflect the true efficiencies of the systems.

The alpha spec results indicate apparent detector efficiencies of 0.23 and 0.27, which are significantly lower than directly measured efficiencies. It is likely that the RaDeCC system measures surface-bound 228Ra (228Th) on particles, but does not detect activity confined in the crystal lattice (Cai et al., 2012). In contrast, 228Th activity based on alpha spectroscopy will represent all 228Th present in the particles. Particle loading on the filters and chamber geometry are two other factors that may affect the counting efficiencies. We found no significant differences in counting efficiencies between shallow (high loading) and deep water (low loading) particulate samples collected at BATS. Cai et al. (2012) measured no changes in counting efficiency up to a particle loading of 25 g, orders of magnitude greater than the loadings we are measuring.

2.3.2. Dissolved 228Th

For the calibration of the RaDeCC efficiencies for the MnO$_2$ cartridges, the absolute activity (dpm) per sample is needed. After the initial RaDeCC counting was completed, the cartridges were ashed at 820 °C followed by acid leaching using 8 N HNO$_3$ and wet chemistry separation (Buesseler et al., 1992). Briefly a known amount of 230Th spike was added to each sample for estimating sample recoveries and the same chemical purification and alpha counting method for the particulate samples outlined above was followed. The counting efficiencies for the cartridge samples were found to be 0.35 ± 0.03 and 0.45 ± 0.05 for the two detectors utilized to run dissolved samples (Fig. 4). In addition to these two detectors, five additional samples were run using two additional detectors for a total of 15 cross-calibration measurements.

The absolute efficiencies for the RaDeCC systems can also be determined independently using MnO$_2$ cartridges spiked with a gravimetrically prepared 210Th standard (with Ra and Rn daughters in equilibrium). Briefly two MnO$_2$ coated acrylic cartridges were placed in filter housings connected in series. The cartridges were primed by passing radium free water through them. Then 1 L of radium free water spiked with 50 dpm of 232Th standard was slowly passed (~10 mL/min) through both the cartridges using a peristaltic pump. The bottle with standard solution was rinsed twice with radium free water (~1 L) and passed through the cartridges. Negligible loss on to tubing walls is assumed. The cartridges were then counted for approximately 2 h on the RaDeCC system following the procedures outlined above until the 1 sigma counting errors were reduced to less than 2%. The first cartridge was treated as the standard while the second cartridge in the series was counted to test for breakthrough of Th standard from the first cartridge. No measurable activity was detected on the second cartridge. The efficiencies were found to be 0.38 ± 0.01 and 0.47 ± 0.01 for the two detectors respectively, which are within the error of those determined via alpha counting (0.35 ± 0.03 and 0.45 ± 0.05 respectively).

These absolute efficiencies for the RaDeCC systems determined independently using 232Th standards were used to calculate the activities of all dissolved samples counted by both the RaDeCC systems and plotted against their corresponding activities measured via traditional alpha spectroscopy. The 1:1 relationship ($r^2 = 0.96; p < 4 \times 10^{-13}$) between activities determined via RaDeCC and alpha spectrometry also indicate

Fig. 4. Measurements of dissolved 228Th on two different RaDeCC systems compared to alpha spectrometry results.

Fig. 5. Dissolved 228Th activity measured using the new methodology versus traditional alpha spectroscopy measurement.
that the systems are well calibrated for direct measurement of 228Th activities (Fig. 5).

3. Case study

To illustrate the viability of the method, we present an upper ocean 228Th and 228Ra profile from the US GEOTRACES North Atlantic expedition during October–November 2010 (Fig. 6). The 228Th and 228Ra measurements were carried out following the methodology outlined in Fig. 7 with 226Ra activities determined via the 222Rn emanation technique. The station location was ~200 km south of the Cape Verde Islands in the eastern North Atlantic (17.4°N, 24.5°W). The temperature profile indicated a shallow (~30 m) mixed layer, while dissolved oxygen displayed a broad minimum between 400 and 500 m (Fig. 6A). Particle concentrations as indicated by the transmissometer profile were characterized by a subsurface peak extending just below the mixed layer at 30 m to 60 m (Fig. 6B). Below 60 m, particle concentrations decreased sharply until ~200 m where they reached near baseline values. Conversely, particulate 228Th was low in the upper 100 m (0.026 ± 0.003 dpm 100 L$^{-1}$), with maximum values of $0.06 \pm$
0.006 dpm 100 L$^{-1}$ observed between 135 and 235 m (Fig. 6B). No prior 228Th data is available from this region, however, Cochran et al. (1987) reported particulate 228Th of between 0.09 and 0.29 dpm 100 L$^{-1}$ at the surface to 0.04–0.20 dpm 100 L$^{-1}$ at 800 m in the northwest Atlantic (Cochran et al., 1987).

Dissolved 228Ra activities were highest near the surface at ~2.5 dpm 100 L$^{-1}$, gradually decreasing with depth to 0.16 dpm 100 L$^{-1}$ at 600 m and below (Fig. 6C). There was a deficiency of dissolved 228Th with respect to 228Ra in the upper 200 m with activities ranging from 0.26 ± 0.09 dpm 100 L$^{-1}$ at the surface to 0.074 ± 0.008 at 800 m. The dissolved 228Th/228Ra ratio increases from ≪1 in the euphotic zone to ~1 in the deeper water column indicating that 228Th removed by particles from surface waters may be partially released back to the water column as the particles sink. The dissolved 228Th activity peak of 0.65 ± 0.09 dpm 100 L$^{-1}$ is observed at 185 m reflecting surface scavenging and subsurface regeneration of 228Th and a concurrent increase in particulate 228Th activities around 135–235 m (Fig. 6B). The dissolved 226Ra and 228Th values are similar to those observed by Li et al. (1980) in this region as a part of Geochemical Ocean Section Program (GEOSECS). Similar subsurface peaks in dissolved 228Th have been observed in both Atlantic and Pacific Oceans (Li et al., 1980; Luo et al., 1995).

The 228Ra–228Th disequilibria observed at this station may be used to calculate a 228Th flux of 911 ± 94 dpm m$^{-2}$ y$^{-1}$ at 450 m and 1089 ± 100 dpm m$^{-2}$ y$^{-1}$ at 1000 m, assuming a 1-D steady state model (Fig. 6D). This is within the range of previously reported 228Th fluxes of 510 ± 300 and 1120 ± 400 dpm m$^{-2}$ y$^{-1}$ at 350 m for two locations nearest to our station (Li et al., 1980).

4. Conclusions

Particle dynamics in the mesopelagic region of the ocean play an important role in the biogeochemical cycling of organic carbon, nutrients and trace metals in the global ocean. Traditionally this region of the ocean has not been well studied using natural radioisotope tracers. The major hurdle towards progress in this regard is expensive, analytically challenging and time consuming procedures associated with the collection and chemical analysis of such samples. In this study we have developed a rapid, nondestructive method for measuring 228Th in both the dissolved and particulate phase based on the delayed coincidence counting system.

The method has been demonstrated to be very precise and rapid. Overall the biggest challenge associated with this method is collection of large volume water using in situ pumps. We recommend at least 600 L for upper ocean and 1200 L for deeper ocean in order to carry out particulate 228Th measurements with an analytical uncertainty of 15% or less. In combination with 228Ra measurements in the water column, future application of 228Ra–228Th will enable researchers to quantify material flux integrated over annual time scales in both the upper ocean and the mesopelagic zone. In areas of low scavenging, this isotope
pair can be used to quantify shelf-basin exchange rates as recently demonstrated for the eastern Arctic Ocean (Rutgers van der Loeff et al., 2012). This method is relatively simple in principle but requires a number of steps to properly calibrate the RaDeCC (especially for the QMA filter geometry) and to quantify scavenging efficiencies for dissolved Ra and Th on MnO₂ cartridges (Fig. 7). The major advantages of this method, once calibration is performed, are the relative ease of measurement, which distinguish ²²⁸Th that has been scavenged by surface adsorption.

The need to use one single MnO₂ cartridge to determine cartridge efficiency reduces the effort by 50% compared to traditional cartridge methods, which require analyses of two cartridges connected in series to determine efficiencies (Livingston & Cochran, 1987; Buesseler et al., 1992). The nondestructive nature of this procedure allows particulate samples collected via in situ pumps to be subsequently analyzed for other trace elements and isotopes of interest on the same filters.

Acknowledgments

We would like to thank the captains and crew of the R/V Knoor and R/V Atlantic Explorer. Thanks to the Café Thorium members—Sharmila Pal and Steve Pike for their help with sample collection and processing. We would also like to thank two anonymous reviewers and guest editor Rob Middag for their valuable comments and suggestions. This research was funded by NSF Chemical Oceanography program (grant numbers OCE-0726319, OCE-0751461, OCE-0925158, OCE-0926559).

References

