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The Value of Scientific Research on the Ocean’s Biological Carbon Pump 

 

Abstract 

The ocean’s biological carbon pump (BCP) sequesters carbon from the surface to the 

deep ocean and seabed, constituting one of Earth’s most valuable ecosystem services. Significant 

uncertainty exists surrounding the amounts and rates of organic carbon sequestered in the oceans, 

however. With improved understanding of BCP sequestration, especially its scale, world 

policymakers would be positioned to make more informed decisions regarding the mitigation of 

carbon emissions. Here, an analytical model of the economic effects of global carbon 

emissions—including scientific uncertainty about BCP sequestration—was developed to 

estimate the value of marine scientific research concerning sequestration. The discounted net 

economic benefit of a putative 20-year scientific research program to narrow the range of 

uncertainty around the amount of carbon sequestered in the ocean is on the order of $0.5 trillion 

(USD), depending upon the accuracy of predictions, the convexities of climate damage and 

economic output functions, and the initial range of uncertainty.  
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1. Introduction  

1.1 Policy Context and Relevance 

In 2002, the World Summit on Sustainable Development (the Johannesburg “Earth 

Summit”) established a “Regular Process” for reviewing the state of the world’s oceans, 

including its socio-economic aspects. The Regular Process culminated in the publication, in 

2016, of the First Global Integrated Marine Assessment (the World Ocean Assessment I or 

WOA1). Among its many findings, the WOA1 authors concluded that many of the natural 

structures and processes comprising the world’s ocean systems had been seriously degraded by 

human activities, signifying that human uses of the ocean were following unsustainable paths 

(Inniss & Simcock 2016). Further, it identified significant gaps in knowledge about ocean CO2 

absorption and nutrient cycling, among limits to understanding other important physical and 

geochemical processes.  

In 2015, the UN General Assembly adopted its 2030 Agenda for Sustainable 

Development (2030 Agenda) comprising 17 goals for sustainable development (SDGs), 

including those based on themes relating to energy, climate, the oceans, and science and 

technology, among many others. For each SDG, a set of target objectives were identified, and 

progress in achieving these targets was to be measured using one or more specified indicators. 

For SDG number 14 (SDG14), which is focused on the goal to “conserve and sustainably use the 

oceans, seas and marine resources for sustainable development,” progress in assembling time 

series on indicators has been slow, but, for those indicators that can be represented by actual 

data, the relevant trends do not seem to be improving (UNSD 2019). By implementing status 

reports and baselines about the oceans, the Regular Process was intended to motivate the 
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attainment of the 2030 Agenda, especially the SDG14 targets and other ocean-relevant targets 

embodied in several other SDGs. 

Importantly, the WOA1 report characterized the Earth’s ocean and atmosphere as linked 

systems, necessitating the coordination of scientific research across both media in order to 

understand the full implications of climate change. More specifically, because of the important 

biophysical and geochemical linkages relating to carbon cycling, the WOA1 authors 

acknowledged the high degree of complementarity between the Regular Process assessments and 

the periodic reviews of global climate change undertaken by the Intergovernmental Panel on 

Climate Change (IPCC). A leading recent example of this complementarity comprised the 2019 

Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC), which assigned 

levels of confidence to observed and projected impacts and risks of climate change to a wide 

range of alterations in ocean states and dynamics.  

One of the most critical—and valuable—ocean ecosystem services concerns the export of 

carbon from the surface ocean to the deep ocean and deep seabed. There are fundamental 

uncertainties about the processes of carbon export, including its driving mechanisms and fluxes, 

but a critical mechanism is known to involve the biological carbon pump (BCP). The biological 

pump entails several pathways by which particulate organic carbon (POC) is exported to the 

deep ocean (Boyd et al. 2019), including the sinking of phytoplankton—as individual cells or 

aggregates—as marine snow, the release of fecal pellets by zooplankton grazers, transport via 

mesopelagic diel migrating fish, and the seasonal migration and hibernation at depth of 

zooplankton in some regions. Scientists are still working out the mechanisms by which the 

biological pump operates, and they have been generating and testing hypotheses on the 

environmental factors that influence its operation (Henson et al. 2019; Boyd et al. 2019; Le 
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Moigne et al. 2019; Siegel et al. 2016).  Further, the extent to which ocean carbon export could 

be compromised by the climate-induced warming and increased stratification of surface waters, 

the widening of the oxygen minimization zone (OMZ), limits on nutrient fluxes, and 

acidification of sea water (Hofmann and Schellnhuber 2009), have been suggested, but they are 

not known with any degree of confidence (IPCC 2019). According to the SROCC authors: 

…different lines of evidence (including observation, modeling and experimental studies) provide 

low confidence on the mechanistic understanding of how climatic drivers affect different 

components of the biological pump in the epipelagic ocean, as well as changes in the efficiency 

and magnitude of carbon export in the deep ocean…this renders the projection of future 

contribution of the biological carbon pump to the export of POC to the deep ocean having low 

confidence. (IPCC 2019; p. 5-52) 

 

In 2017, recognizing that marine scientific observations and research were essential for 

measuring and predicting the responses of the oceans to climate change, the UN General 

Assembly proclaimed a Decade of Ocean Science for Sustainable Development (2021-2030) (the 

Decade). One of the central purposes of the Decade will be to ensure that ocean science can 

contribute to the sustainable development goals embodied in the 2030 Agenda, especially those 

relating to the ocean. Understanding the processes of carbon export, which now is believed to 

sequester between 20-30% of current levels of anthropogenic carbon emissions, is likely to 

emerge as one of the central research focuses of the Decade (Le Quéré et al. 2018; Lindoso 

2019). The knowledge and insights resulting from the Decade’s research are envisioned to 

provide support for decisions to conserve and manage human uses of the ocean so that both 

current and future generations can continue to benefit from its extraordinary array of ecosystem 

services, including its highly valuable regulating services. 

The Intergovernmental Oceanographic Commission (IOC) of UNESCO has been chosen 

to coordinate the efforts of the international community in sponsoring and undertaking the 

relevant science, but an absence of national interest backed by funding now threatens to limit the 

extent to which the Decade can realize its potential (cf., Isensee et al. 2017). To date, the scale in 
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economic terms of the benefits provided by the oceans in sequestering anthropogenic carbon 

emissions—and the risks imposed by climate change to the maintenance of those benefits—have 

not been fully evaluated and recognized. The methods and estimates presented here are an 

important first step at elucidating those benefits and, more specifically, in formulating a strong 

economic argument for carrying out the research program envisioned by the Decade. Without 

such an argument, the goals for sustainable development of the oceans, as articulated in the 2030 

Agenda, are unlikely to be realized, the health of the Earth’s oceans will continue to wane, and 

the capacity of the oceans to mitigate damages from climate change may be irrevocably 

compromised. 

In terms of scale and economic significance, the restructuring of the global carbon cycle 

and the accompanying alteration of the climate comprises the largest transformation of natural 

systems ever experienced in modern times. All humans who have ever lived have abetted this 

change, but human activities from the industrial revolution forward have made the weightiest 

contributions (Hsiang and Kopp 2018). During 2008-2017, global anthropogenic carbon 

emissions increased every decade from an average of 3.1 Gt C/yr in the 1960s to an average of 

9.4 Gt C/yr today (Le Quéré et al. 2018).  

The purpose of this study was to scale the potential value of information that could be 

provided by marine scientific research about carbon sequestration in the ocean. The value of 

information is defined as a difference in the economic consequences of adopting a policy action, 

with-and-without the knowledge and understanding provided through investments in scientific 

research. Investments in scientific research could improve human understanding of the workings 

of natural systems, enhancing abilities to predict future states of nature. Science-based 

understanding could lead to a more reasoned consideration and choice of policies and 
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management actions, which in turn could lead to improvements in human welfare. Moreover, in 

the specific case examined here, assessments of the value of research for reducing uncertainty 

regarding ocean carbon sequestration could be used to help inform the appropriate scale of public 

investments in the science itself. 

An analytical framework for assessing the value of marine scientific research in the 

presence of uncertainty about BCP sequestration was developed.
1
  The value of research to 

reduce this uncertainty was measured in terms of potential increases in global welfare associated 

with more accurate carbon emission controls. Alternatively, should better scientific knowledge 

on BCP sequestration become available but nevertheless be ignored by policy makers, this value 

could be considered an estimate of the potential cost of ignoring the relevant scientific 

information. 

The earth’s natural systems are complex, and the coupled natural and human systems are 

even more so. To improve our understanding of the many mechanisms and feedback interactions 

will require extensive scientific research efforts and the consequent accumulation of knowledge 

over time. In this study, we assess the value of a specific form of research (BCP sequestration), 

assuming that the research will reduce relevant uncertainties from previous work. 

 

1.2. Literature Review 

Apart from the atmosphere, there are two major natural sinks of carbon, terrestrial and 

oceanic. The global ocean has absorbed roughly one-third of the anthropogenic CO2 emitted 

                                                           
1
 A substantial amount of work on ocean organic carbon sequestration has been done since the seminal work of 

Martin et al. (1987). Among others, key papers (e.g., Armstrong et al. 2002; Boyd et al. 2019; Buesseler et al. 2007; 

Klaas and Archer 2002; Marsay et al. 2015) present examples on how research on the BCP evolved during the past 

three decades. These studies all point to different mechanisms influencing the strength of the ocean's biological 

carbon pump, often complicating the initial picture provided by Martin et al. 
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during the industrial period (Khatiwala et al., 2013).
2
 Carbon is sequestered in the oceans 

through two mechanisms: a solubility pump, which comprises a physico-chemical process that 

slowly transports carbon, as dissolved inorganic carbon, from the ocean's surface to its interior, 

and a biological carbon pump (BCP), which comprises a more rapid biologically driven 

sequestration of carbon from the atmosphere to the ocean interior and seafloor sediments.  

The stocks and flows of carbon in the ocean have been identified and described in broad 

terms, but considerable uncertainty still remains about the mechanics of the ocean carbon cycle, 

especially in the face of shifting ambient environmental conditions. Climate change is expected 

to lead to a more stable stratification of ocean waters and a general slowing down of large-scale 

mixing and circulation, causing a lowered uptake of anthropogenic carbon and reductions in the 

supply of nutrients to help drive the BCP (IPCC 2019). Using biogeochemical models, Barange 

et al. (2017) estimated the costs associated with potential reductions in carbon sequestration by 

the BCP in the North Atlantic Ocean over the 21st century. These authors estimated that carbon 

flux at 1,000m in the North Atlantic would decline 27-43% by the end of the century.
3
 Over the 

90yr study period, the costs to offset this lost service through the abatement of carbon emissions 

would require between $0.2-3.0 trillion (USD). 

The literature has begun to address the value of scientific research in the context of 

environmental and marine resource management (Lave 1963; Adams et al. 1995; Bernknopf et 

al. 1997; Schimmelpfennig and Norton 2003; Costello et al. 2010). Further, several studies have 

assessed the value of information in climate research and emission control policy. Peck and 

                                                           
2
 Khatiwala et al. (2013) estimated that, by 2010, the global ocean inventory of anthropogenic carbon was 155 ± 31 

Gt C. 

3
 At a depth of 1000m, it is assumed typically that carbon has been sequestered for centuries or longer. Results of an 

analysis using a global ocean general circulation model suggest that the time scale it takes for deep water to reach 

the surface varies by location, ranging from 100 to more than 1000 years (Primeau 2005). 
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Teisberg (1993) estimated the value of information about global warming uncertainties in a 

simple decision-tree framework by investigating the sensitivity of optimal carbon control 

strategies to changes in parameters of the Carbon Emissions Trajectory Assessment (CETA) 

Model. These authors found that, if a policy of optimal emission controls under uncertainty was 

implemented, the resolution of uncertainty had a high value relative to scientific research 

budgets, and resolving uncertainty about the costs of warming was nearly as important as 

resolving uncertainty about the extent of warming. 

Cooke et al. (2014, 2017) developed estimates of the value of information for climate 

observing systems (i.e., the proposed space borne CLARREO [Climate Absolute Radiance and 

Refractivity Observatory]). In their analyses, when the rate of temperature rise exceeded a 

critical value with sufficient confidence, the optimal policy response was to switch from a 

business-as-usual emissions path to a reduced emissions path. Uncertainty about observed global 

average temperature is a result of both natural variability and instrument measurement errors. 

With the CLARREO technology in place, measurement errors would be reduced, leading to a 

higher level of confidence about temperature increases and allowing society to reduce emissions 

sooner, thereby avoiding damages that otherwise would be incurred by business-as-usual 

emissions. Climate damages and abatement costs were estimated using the DICE (Dynamic 

Integrated Climate-Economy) model developed by Nordhaus (1993 and 2017). Under discount 

rates of 2.5%, 3% and 5% the “option value” of CLARREO was $16.7, $9.0 and $1.1 trillion 

(2008 USD), respectively.
4
 

                                                           
4
 In 2017, Cooke et al. published an enhanced version of their earlier (2014) value of information calculation. In the 

enhanced study, the value of a new observing system was calculated as the value associated with the “option” to use 

the new system in making optimal future climate policy choices, rather than using the existing system. Because 

emission control policies were examined over a century-long time period (2015-2115), the results were sensitive 

with respect to the discount rate. 
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Hope (2015) used the PAGE09 (Policy Analysis of the Greenhouse Effect 2009) model 

to estimate the value of better information about “transient” climate response, the increase in 

global mean temperature resulting from a doubling of the concentration of CO2 in the 

atmosphere in 70 years. In that study, the preferred policy response was to optimize the carbon 

emissions path to minimize both climate change impacts and abatement costs. New information 

would reduce the range of uncertainty about the transient response. The probabilistic structure of 

the model enabled the author to simulate climate damage (with adaptation) and abatement costs 

for different uncertainty ranges. Simulation results showed that a 50% reduction in the 

uncertainty range for a transient climate response had a net present value of about $10.3 trillion 

(2005 USD) if accomplished in time for emissions to be adjusted by 2020, falling to $9.7 trillion 

if accomplished in time for emissions to be adjusted by 2030. 

Freeman et al. (2015) provided a different and supplementary justification for a vigorous 

climate science research effort. These authors considered what the value of advancements in 

climate science would be if policy makers could not respond to new information about climate 

change because international climate agreements were ineffective. The authors argued that better 

predictions about the consequences of climate change would lead to better adaptation through 

consumption smoothing (precautionary savings in anticipation of future losses) and protective 

measures (e.g., flood defenses or choice of location) to reduce damages. 

Pindyck (2012) estimated the fraction of consumption that society would be willing to 

sacrifice to ensure that any increase in temperature at a future point was generally below 2%, 

even for small values of temperature increase, which was consistent with moderate abatement 

policies. He also calculated willingness to pay (WTP) for shifts in the mean and standard 

deviation of the temperature distribution. His results showed that uncertainty over temperature 
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change could be a stronger driver of WTP than expectations, and thus should be a major focus of 

climate change policy. 

 

2. Biological Carbon Pump 

Carbon sequestration is defined as the long-term or near-permanent storage of carbon in a 

given area. The oceans provide a crucial ecosystem service by sequestering carbon through the 

BCP (Boyd et al. 2019; Barange et al. 2017). The vertical transport of carbon and its 

sequestration via the BCP strongly affects the atmospheric levels of CO2 (Kwon et al. 2009), 

making it essential to understand the carbon flux mechanisms of the BCP. 

The euphotic zone is the sun-lit surface layer of the ocean, where primary production 

takes place as phytoplankton use atmospheric CO2 in its dissolved inorganic carbon (DIC) form 

and sunlight to form particulate organic carbon (POC) and particulate inorganic carbon (PIC). 

The sequestration of carbon is mainly carried out via gravitational sinking of particles from the 

euphotic zone to the deep ocean (Antia et al. 2001; Buesseler et al. 2007). As recently reviewed 

by Boyd et al. (2019), several other “pumps” can contribute to carbon sequestration.  These 

include carbon transport via mesopelagic diel migrators (Bianchi et al. 2013) and, in some 

regions, the seasonal migration and hibernation of zooplankton at greater depths during winter 

months (Jonasdottir et al. 2015).  In addition, there are several physical pumps that inject surface 

waters and suspended and dissolved organic matter to depth (Levey et al. 2013; Stukel et al. 

2017).  Of these non-gravitational pumps, the seasonal migration and diel migration (assuming 

production of efficiently sinking particles at depth), can approach levels of carbon sequestration 

equivalent to gravitational settling, when considering carbon transport and sequestration below 

1000m. While on average 10% of the carbon leaving the euphotic zone reaches 1000m, only 
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about 1% of the carbon produced in the euphotic zone is thought to reach the ocean floor where 

it can remain for even longer time scales than deep ocean ventilation time scales (millennia) 

(Sanders et al. 2014).  

Ultimately, the degree of primary production and its attenuation with depth determine the 

strength and efficiency of the BCP (Barange et al. 2017), with export production (EP) commonly 

used to define the carbon flux at a particular depth.  Thus, the efficiency of carbon sequestration 

is determined by the magnitude of EP and processes that attenuate flux, which include both 

physical breakdown and biological consumption, the impact of which will also depend on 

changes in particle sinking velocity (Taucher et al. 2014; Villa Alfagame et al. 2016).  Both POC 

production and the strength of the BCP are expected to decline in response to lowered nutrient 

supply with warming and increasing sea surface temperatures (Matsumoto et al. 2010; Manizza 

et al. 2010). Changes to the algal and zooplankton community structures in the subsurface ocean 

are expected to have the greatest influence on POC flux (Boyd, 2015), but these are difficult to 

predict. A weakened BCP would lead to reduced ocean carbon storage, exacerbating atmospheric 

CO2 levels, and causing atmospheric temperatures to rise.  

There are many uncertainties in the quantification of EP in the global ocean due to 

spatiotemporal variations and an incomplete understanding of the potential effects of climate 

change on the biogeochemical processes involved in carbon sequestration (Boyd and Trull, 

2007).  Current global annual estimates of EP from the surface ocean from multiple independent 

studies range from 5 PgC (or GtC) to more than 12 PgC per year (Boyd and Trull 2007; Henson 

et al. 2011, Siegel et al. 2016). This enormous uncertainty reflects a poor understanding of the 

BCP, due to its natural variability and limited observations of the magnitude of EP and processes 
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controlling the BCP efficiencies. The premise of the assessment presented here is that additional 

research will improve our understanding and reduce these uncertainties (Siegel et al. 2016). 

 

3. Analytical Framework 

Climate policy research utilizes integrated assessment models (IAMs), which integrate 

socioeconomic scenarios that produce future emissions trajectories. The trajectories are fed into a 

climate model that translates emissions paths into carbon concentrations, producing scenarios for 

future temperatures, precipitation, sea levels, and other environmental conditions. These climatic 

outcomes are then fed into a set of damage functions, which map the climate model output into 

economic damages at the global or regional level (Auffhammer 2018). DICE and PAGE are two 

well-known IAMs. 

Policies concerning the levels of global carbon emissions are investigated here using the 

DICE framework (Nordhaus 1993, 2017). To avoid unnecessary complexity and to focus on the 

value of marine scientific research, the DICE model, as outlined in the appendix, has been 

streamlined; in particular, a multi-period environment is not modeled formally. Key interactions 

affecting the value of marine scientific research on the BCP are thereby highlighted, ignoring 

many complex, dynamic effects, such as population growth, technological change, and 

discounting. 

Define the social welfare (W) in a year as follows: 

 𝑊[𝐶(𝑞)] = 𝑈{𝑌(𝑞) − 𝐷[𝑁(𝑞) + 𝑁0]} (1) 

where C is consumption; Y is gross economic output less investment; D is climate damage; N is 

the growth in carbon concentration in the atmosphere; N0 is the stock of carbon in the 
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atmosphere at the beginning of the year, and q is the carbon emission target.
5
 Because both Y and 

D are functions of q, and 𝐶 = 𝑌 − 𝐷, consumption is regulated by the emission target. 

The damage function is a mapping of climate conditions (i.e., carbon concentration) into 

economic outcomes, which include negative economic effects on various economic sectors (e.g., 

crop damages in agriculture, changes in energy production and consumption, and disease 

outbreaks affecting public health (Le Quéré et al. 2020)), storm damages, coastal hazards 

resulting from sea-level rise, and other social, environmental, and ecological impacts. The 

damage function also accounts for adaptation
6
 and abatement

7
 costs.  

Because climate change is a global phenomenon, it can be challenging to quantify 

economic damages, which vary across space and time. In addition, the effects of greenhouse gas 

emissions at one point in time can persist for hundreds of years. Unit damage is expected to 

increase over time, because of the rising stock of greenhouse gases in the atmosphere and the 

vulnerability associated with economic growth (Nordhaus 2017; Auffhammer 2018). In addition, 

climate change may affect carbon export in the ocean (Laws et al. 2000; Bopp et al. 2001; 

Manizza et al. 2010; Barange et al. 2017). 

The social welfare, economic production, and climate damage functions have the 

following properties:  

 
𝜕𝑊

𝜕𝐶
≥ 0,

𝜕2𝑊

𝜕𝐶2
≤ 0,

𝜕𝑌

𝜕𝑞
≥ 0,

𝜕2𝑌

𝜕𝑞2
≤ 0,

𝜕𝐷

𝜕𝑁
≥ 0,

𝜕2𝐷

𝜕𝑁2
≥ 0. (2) 

                                                           
5
 The emission target could be implemented through a global action plan. For example, the plan under the Paris 

Agreement of 2015 was to limit global warming 'well below' 2°C. 

 
6
 Climate change adaptation is a response to global warming that seeks to reduce the vulnerability of social and 

biological systems to relatively sudden change and thus offset the effects of global warming. 

 
7
 The cost of reducing greenhouse gas emissions. 
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Greater benefits are associated with higher levels of consumption (C) which require greater 

output (Y) and lower climate costs (D).  Both Y and D are positively related to the level of carbon 

emissions (q).  

The growth in carbon concentration in the atmosphere in a year (N) equals the carbon 

emissions (q) less carbon sequestered on land (L) and in the oceans (ML + z):
8
 

 𝑁(𝑞) = 𝑞 − 𝐿 − 𝑀𝐿 −  𝑧𝜌 (3) 

To bound the uncertainty about BCP sequestration, z is the difference between high- and low-end 

estimates of annually sequestered organic carbon:
9
  

 𝑧 = 𝑀𝐻 − 𝑀𝐿 > 0 (4) 

Uncertainty is modeled by the stochastic variable ρ with 0 ≤ ρ ≤ 1. In equation (3), ρz is the 

actual amount of carbon sequestered by the BCP above ML. There are two corner cases. In the 

first,  = 0 and the ocean sequestration is ML.  In the second,  = 1, and the ocean sequestration 

is MH. One primary objective of a program of marine scientific research is to estimate out how 

much carbon is sequestered by the oceans. Without prior information about , assume that  

follows a probability density function (). The expected value of BCP sequestration is 𝑀𝐿 +

𝑧𝐸(𝜌). Note that N is the change in atmospheric carbon in a year, given the stock of atmospheric 

carbon at the beginning of the year. N can be negative when carbon emissions are smaller than 

the sum of sequestration on land and in the ocean. 

 

                                                           
8
 On the global carbon budget, Le Quéré et al. (2018) estimated that in the decade from 2008-2017, fossil CO2 

emissions were 9.40.5 GtC/yr, land-use change (mainly deforestation) 1.50.7 GtC/yr, the growth rate of 

atmospheric CO2 concentration 4.70.02 GtC/yr, the ocean CO2 sink 2.40.5 GtC/yr,
8
 and the terrestrial CO2 sink 

3.20.8 GtC/yr, with a budget imbalance of 0.5 GtC/yr (all uncertainties are reported as 1 standard deviation), 

indicating overestimated emissions or underestimated sinks due to imperfect data and understanding of the 

contemporary carbon cycle. Here we focus only on the uncertainty associated with the BCP.  
9
 This formulation does not explicitly consider uncertainties associated with other ocean carbon sequestration 

mechanisms (e.g., the solubility pump).  
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3.1. Socially Optimal Carbon Emission Level under Uncertainty 

Given the effect of stochastic variable  (and in turn N) on W, the problem is to identify 

the optimal level of emission (q) so that the expected social welfare (W) is maximized, or, 

maximizing the expected value of objective function (1) subject to constraint (3). Focusing on an 

optimal carbon emission level, consider q to be a control variable. From (1), choose q to 

maximize: 

 𝑚𝑎𝑥 𝐸{𝑊[𝐶(𝑞)]} = 𝑈{𝑌(𝑞) − 𝐸{𝐷[𝑁(𝑞) + 𝑁0]}} (5) 

The first order condition is: 

 
𝑑𝑌

𝑑𝑞
=

𝑑𝐸(𝐷)

𝑑𝑁

𝑑𝑁

𝑑𝑞
 (6) 

The left-hand-side of Equation (6) is the marginal benefit of carbon emissions in terms of 

increased economic output, and the right-hand-side is the expected marginal damage. The 

solution to (6), q
*
, is the optimal level of carbon emissions, assuming certainty about outputs. As 

illustrated in Fig. 1, at q
*
 the net benefit of carbon emissions (the vertical distance between the 

benefits of increased economic growth, Y, and the costs of carbon emissions, D) is maximized. 

An increase in BCP sequestration would lead to a reduction in climate-associated damages (a 

downward shift of D to D’) at a new higher level of economic output (a right shift to q’
*
), and 

vice versa. Within this framework, it is important to recognize that a benefit of increased BCP 

sequestration comprises growth in economic output, which itself implies higher levels of carbon 

emissions.    

Specify the output function to be:  

 𝑌(𝑞) =  + 𝜔𝑞𝛾 (7) 

where  ,  , and  are coefficients. Output is concave with respect to q and 0 <   < 1. 
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The damage caused to the economy and environment (D) is a function of accumulation of 

atmospheric carbon: 

 𝐷(𝑁 + 𝑁0) = {
𝜂𝑁𝜆 + 𝐷0(𝑁0) 𝑁 > 0

𝐷0(𝑁0) 𝑁 ≤ 0
 (8) 

where  > 0 is a coefficient,   1 is a coefficient to capture the nonlinear effect of N on climate 

damage. D0 is the annual damage associated with N0 (the stock of carbon in the atmosphere).
10

 

 Substituting (3) into (8), and noting that  is stochastic: 

 

𝐸{𝐷[𝑁(𝑞) + 𝑁0]} =  ∫ (𝜂
1

0

𝑁)𝜑(𝜌)𝑑𝜌 + 𝐷0(𝑁0)

= ∫ 𝜂
1

0

(𝑞 − 𝐿 − 𝑀𝐿 −  𝑧𝜌)𝜑(𝜌)𝑑𝜌 + 𝐷0(𝑁0). 

(9) 

Substituting (7) and (9) into (6) yields: 

 𝜔𝛾𝑞𝛾−1 = 𝜂∫ (𝑞 − 𝐿 − 𝑀𝐿 −  𝑧𝜌)−1𝜑(𝜌)𝑑𝜌
1

0

 . (10) 

For  = 2 and  = 1, the optimal level of emission can be solved using (10):  

 𝑞∗ =
𝜔

2
+ 𝐿 + 𝑀𝐿 + 𝑧𝐸(𝜌) (11) 

For a specific set of parameters, q
*
 increases as the mean of  becomes larger.  Thus, the results 

suggest that when more carbon is absorbed by the BCP, the optimal level of carbon emissions 

(q
*
) can be set higher than that associated with a lower .  This result highlights the importance 

of marine scientific research on BCP to climate policy. 

 The resulting expected social welfare (5) is:  

                                                           
10

 When N  0, the stock of carbon in the atmosphere is not increasing or decreasing in that year. Here, we assume 

no incremental damage beyond the base damage associated with N0 and ignore a possible net reduction in total 

damage. Note that the incremental damage associated with a positive increase in N is always greater than the 

reduction in damage resulting from a negative N, because climate damage function is convex (see Figure 1). 
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 𝑊∗ = 𝐸[𝑊(𝑞∗)] . (12) 

 

3.2. Value of Information 

A standard Bayesian approach can be used to estimate the value of information resulting 

from scientific research (Kite-Powell and Solow 1994; Adams et al. 1995; Jin et al. 2006, 2008).  

Society would choose a carbon emission level (q), and the resulting social welfare (W) would 

depend upon the state of nature (), which is unknown at the time of the choice.  The prior 

probability density function (pdf), (), reflects society’s existing knowledge about .  Note that 

0     1. 

 Suppose that research is conducted to develop a prediction of .  Let s represent the 

prediction. According to Bayes’ theorem, the posterior pdf of , given s: 

 𝜑(𝜌|𝑠) =
𝑙(𝑠|𝜌)𝜑(𝜌)

𝑔(𝑠)
 (13) 

where l(s|) is the likelihood that prediction s will have been made, given the true value of , and 

 𝑔(𝑠) =  ∫ 𝑙(𝑠|𝑝)𝜑(𝜌)𝑑𝜌 (14) 

is the pdf of s.  The posterior pdf of  summarizes all the information by combining the prior 

information and additional information from scientific research (s). Essentially, the prior 𝜑(𝜌) 

represents current understanding of ρ without research, and the posterior 𝜑(𝜌|𝑠) reflects an 

improved understanding of ρ with research.  

 With each prediction (s), society uses the posterior distribution to find a new optimal 

emission level by choosing q to maximize: 

 𝑚𝑎𝑥 𝐸[𝑊(𝑞|𝑠)] = 𝑈{𝑌(𝑞) − 𝐸{𝐷[𝑁(𝑞|𝑠) + 𝑁0]}} (15) 

with Y(q) defined as in (7) and 
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 𝐸{𝐷[𝑁(𝑞|𝑠) + 𝑁0]} =  ∫ [𝜂
1

0

(𝑞 − 𝐿 − 𝑀𝐿 −  𝑧𝜌) ]𝜑(𝜌|𝑠)𝑑𝜌 + 𝐷0(𝑁0) (16) 

For  = 2 and  = 1, the optimal emission level with prediction s, 𝑞𝑠
∗ , is the same as (11) except 

that 𝐸(𝜌) is replaced with the conditional mean 

 
𝐸(𝜌|𝑠) =  ∫ 𝜌

1

0

𝜑(𝜌|𝑠)𝑑𝜌 . 

 

(17) 

The resulting expected net benefit E[W(𝑞𝑠
∗)] (see equation (15)) is conditional on the 

prediction of s, because the optimal activity level qs
*
 is now affected by s and the range of 

prediction (s) is 0  s  1.  The expected social welfare with scientific research is: 

 𝑊𝑠
∗ = ∫ 𝐸[𝑊(𝑞𝑠

∗)]𝑔(𝑠)𝑑𝑠
1

0

 (18) 

The expected net benefit W
*
 in (12) is measured without a prediction (s).  Thus, the value of 

marine scientific research is:  

 𝛥𝑊 = 𝑊𝑠
∗ − 𝑊∗ (19) 

Because the precision of prediction (s) may be improved through scientific research, equation 

(19) may be used to determine ex ante the level of improvement that must be achieved to justify 

a given level of investment in research. 

This framework also can be used to estimate the value of perfect information associated 

with the limiting case in which environmental research is conducted to resolve all of the 

uncertainty.  For that case, a perfect prediction comprises: l(s|) = 1, if s = , and 0 otherwise.
11

  

For each specific prediction, the true  would be known with certainty and society would choose 

the optimal activity level (𝑞𝑠
∗) for the true . The expected net benefit with perfect information 

                                                           
11

 Here we consider the Bayes’ theorem in a discrete form. 
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would be calculated using the prior  (), instead of g(s), in (18).  The ex ante value of perfect 

information then is the average increase in the net benefit that results from optimizing the 

emission level under the certain knowledge of  rather than under the prior distribution.
12

 

 

4. Simulation and Results 

 Numerical simulations are developed using the analytical model described in the previous 

section.  To facilitate the simulations, consider a Beta distribution:
13

  

 𝜑(𝜌) =
𝛼−1(1 − 𝜌)𝛽−1

𝐵(𝛼, 𝛽)
 (20) 

where 0    1,  > 0 and   > 0 are parameters, and B(, ) is the Beta function (= ()()/

( + )).  Note that when  =  = 1, () becomes a uniform distribution, representing a case 

in which society does not have any knowledge of .   

For the prior,  

 𝐸(𝜌) =
𝛼

𝛼 + 𝛽
 . (21) 

 Specify a Beta likelihood pdf: 

 𝑙(𝑠|𝜌) =
𝑠𝑎−1(1 − 𝑠)𝑏−1

𝐵(𝑎, 𝑏)
 (22) 

with 

 𝐸(𝑠|𝜌) =  
𝑎

(𝑎 + 𝑏)
=  (23) 

                                                           
12

 This is consistent with the framework to estimate the expected value of perfect information (EVPI) developed by 

Peck and Teisberg (1993).  

13
 The beta distribution is versatile because it has two parameters which can be chosen to reflect any existing belief 

or information without loss of generality (Bickel and Doksum 2001). 
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where 0  s  1, a > 0 and b > 0 are parameters, and B(a, b) is the Beta function.  The likelihood 

function is a measure of the accuracy of the prediction.  Assume that marine scientific research 

leads to correct predictions on average (i.e., the conditional mean of s equals ).  From (23),  

 𝑏 = 𝑎 (
1

𝜌
−  1) (24) 

The variance of prediction is: 

 𝑉𝑎𝑟(𝑠|𝜌) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
 (25) 

In the above specification, the accuracy of prediction (i.e., the variance) can be modeled by 

changing the parameter a. 

Parameter values for the simulation are summarized in Table 1.  As shown in the table, 

POC flux estimates evaluated at a depth of 500 m range from 2.3 to 5.5 PgC/year,
14

 comprising 

bounds on low- and high-end values for carbon sequestration in this study (Buesseler et al. 

2007). For our purposes, this is a reasonable depth to consider for C sequestration, as carbon 

needs to be transported below several hundred meters in the ocean to be sequestered on average 

longer than the time scales of annual mixing and where it is isolated from contact with the 

atmosphere for hundreds of years or more (Primeau 2005; Palevsky and Doney 2018).  Further, 3 

PgC/year is assumed to be the level of terrestrial carbon sequestration (Le Quéré et al. 2018). 

Coefficients for the output function and climate damage function were selected to approximate 

DICE model scenarios between 2015 and 2020. 

Consider first the relationship between research and the level of uncertainty about  by 

looking at the interactions among prior, likelihood, and posterior distributions. Four scenarios 

represented by different priors have been plotted in Fig. 2: (a) a uniform distribution (0    1) 

                                                           
14

 1 PgC (10
15

gC) = 1 GtC (10
9
tC).  
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representing a scenario in which these is no prior knowledge about  ; (b) a Beta distribution 

suggesting  is relatively small; (c) a distribution suggesting  is relatively large; and (d) an 

intermediate case.
15

  In all cases, research leads to a reduction in the level of uncertainty (i.e., the 

variance of the posterior). The posterior combines the information in the likelihood with the prior 

information. For example, the peak of posterior in (b) is to the left of that in (c), a feature from 

the priors.  

Next, optimal emission levels both with and without research were calculated for a 

nonlinear damage function, taking  = 2.  Without research, the uncertainty about the value of  

is reflected in the prior, and the optimal emission (q
*
) is affected by E() (see (11)).  For a 

uniformly distributed prior, q
*
 = 6.58 GtC/year.  If the level of uncertainty is reduced through 

research, however, the emission target (qs
*
) can be estimated based on information embodied in 

the posterior.  Of course, the value of qs
*
 depends upon the prediction (s) of .  When s  0, BCP 

sequestration is expected to be close to the low-end estimation (ML).  As a result, qs
*
 is lower 

than q
*
.  In contrast, when s is high, and BCP sequestration is closer to the high-end estimation 

(MH), qs
*
 is higher than q

*
.  Fig. 3 plots carbon emission levels (qs

*
) over the range of predictions.  

As shown in the figure, under a uniformly distributed prior, the carbon emission target would 

range from 5.59 GtC/year to 8.63 GtC/year. 

A difference between qs
*
 and q

*
 leads to a difference in net social benefits (W, see (19)), 

which comprises the ex ante value to society of sponsoring research to resolve uncertainty about 

.  In Fig. 4, the values by the level of the accuracy of prediction are depicted for all four priors 

                                                           
15

 Note that in each case, the likelihood and posterior pdfs are bivariate (0    1 and 0  s  1).  We show only 

l(s|=0.5) and (|s=0.5). 
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((a) through (d)).
16

  Although the value of information rises as the accuracy improves, the growth 

rate declines with respect to the level of precision. This implies a diminishing return with respect 

to investment in research. This is because the initial range of uncertainty and the adjustment in 

emission target (from q
*
 to

  
qs

*
) are larger than those of the subsequent ones.  In addition, the 

value of information is largest when there is no knowledge about  (scenario (a)) and smallest 

when prior knowledge indicates that  is near the mid-point between ML and MH.  When the 

prior suggests that  is relatively large, a further reduction in uncertainty through research would 

lead to greater economic benefits.  Thus, the value of information associated with scenario (c) is 

also fairly large. 

The value of information is affected by the difference between the optimal emission 

targets with prediction and without it (qs
*
 and q

*
), and these targets are influenced by the 

coefficients of the benefit function ( in equation (7)) and the damage function ( in equation 

(8)). In addition, the value is influenced by the range of uncertainty (z in equation (10)) in ocean 

carbon sequestration (e.g., the high-end estimate of BCP sequestration MH). 

As noted, the parameters used in the simulations were derived from the literature 

reflecting our current understanding the climate, ocean and economic systems (Buesseler et al. 

2007; Nordhaus 2017), constituting a set of fairly realistic scenarios. For example,  = 2 follows 

the same specification in the DICE model, which is based on the observation that damages are a 

quadratic function of temperature change resulting from carbon emissions (Nordhaus and Sztorc 

2013). In our sensitivity analysis, we examine the range of 1.8-2.2 for  to see how research 

                                                           
16

 This is implemented by changing the parameter value of a from 5 to 20 (the coefficient of variation ranges from 

0.29 to 0.15). 
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value estimation varies by the damage function parameter. Similarly, we run simulations for  

from 0.3 to 0.5 for MH from 3.3 to 7.0 PgC/y. 

 Figs. 5 and 6 summarize the results of sensitivity analysis with respect to these 

parameters, finding that the value of research is positively related to , , and MH, which control 

the curvatures (marginal changes) of the climate damage function, the economic output function 

(see Fig. 1), and the range of uncertainty (z). Greater marginal changes suggest that either the 

cost or the benefit function is more sensitive to changes in emissions (q), which is determined by 

the prediction (s). For the set of parameters specified in the simulations, the value of research is 

more sensitive to parameter changes in the benefit function () than in the cost function (), and 

it is most sensitive to the range of uncertainty (MH). As the high-end estimate of BCP 

sequestration (MH) rises from 3.3 to 7.0 PgC/y, the value of research increases from $0.1 to $1.1 

trillion (Fig. 5). This result is not surprising, because the purpose of research is to reduce 

uncertainty about ocean carbon sequestration. As expected, the emission target qs
*
 is negatively 

related to  and positively related to  and MH  (Fig. 6).
17

 Again, the emission target is least 

sensitive with respect to  and most sensitive with respect to MH. As the high-end estimate of 

BCP sequestration (MH) grows from 3.3 to 7.0 PgC/y, the emission target rises from 6.0 to 6.8 

GtC/y. 

There is a diminishing return in the value of research with respect to continuous 

investments to improve the precision of prediction (Fig. 4). In a long-term research program to 

reduce the uncertainty about BCP sequestration, initial payoffs from research efforts are typically 

the highest, as the range of uncertainty narrows, subsequent gains decline, as the management 

policy (i.e., the emission target) is nearly optimal. As an illustration, we consider a hypothetical 

                                                           
17

 For detailed simulation results, see Appendix 2. 
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20-year research program. The incremental value in each year resulting from improved 

prediction precision (parameter a) can be viewed as a flow of benefits, and we calculate the net 

present values (NPVs) of the total value of the program as in a cash-flow analysis using a 

discount rate of 3%.
18

 

Using the baseline parameters in Table 1, the calculations are summarized in Table 2. As 

before, scenarios (a) through (d) represent different prior distributions (Fig. 2). To examine the 

sensitivity of these results to the scale of coefficients for the cost and benefit functions, Table 3 

shows the results using smaller values for the coefficients for costs ( = 0.3) and benefits ( = 

1.8).  As expected from the results depicted in Fig. 5, the estimated economic value of a 

hypothetical 20-year research program are reduced with cost and benefit functions that exhibit 

smaller marginal changes. For example, the NPV under scenario (a) is decreased from $0.6 

trillion (Table 2) to $0.4 trillion (Table 3).  Overall, the value of a hypothetical 20-year research 

program is estimated at $0.5 trillion. 

 

5. Conclusions 

Considerable uncertainty exists regarding the sequestration of carbon via the BCP. 

Understanding the value of marine scientific research to reduce this uncertainty is important to 

policy makers and to the public. An analytical model of global carbon emission controls under 

scientific uncertainty was developed to characterize the economic value of such research. In the 

model, the amount of carbon sequestered in the ocean ranged from low- to high-end estimates. 

                                                           
18

 As in a financial analysis, the discount rate is a critical component of the discounted cash flow calculation, and it 

determines how much a series of future cash flows is worth as a single lump sum value today. The discount rate is 

affected by both time preference and future economic growth. In cost-benefit analysis, a higher discount rate implies 

that the decision-maker has taken on a more near-term perspective. In contrast, a lower discount rate would suggest 

that the decision-maker has adopted a longer term perspective. The discount rates for public and private analyses 

often are different. Typically, in evaluating social and environmental programs, a lower discount rate is used, 

placing a greater value on the welfare of future generations. 
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The model results supported the conclusion based upon optimality conditions that if BCP 

sequestration is low, then carbon emission levels also must be targeted to lower levels. The 

difference between the optimal levels of carbon emissions both with and without marine 

scientific research resulted in a difference in net economic benefits. This difference is a measure 

of the value of research on the BCP.  Using a Bayesian approach, the value of information was 

estimated ex ante. 

The model was illustrated using numerical simulations. The simulation results clearly 

showed that the value of research depended upon prior knowledge about BCP sequestration.  

This research value was positively related to the level of uncertainty, and it was at its highest 

when the prior was uniformly distributed. As expected, regardless of the level of prior 

knowledge, diminishing returns with respect to the level of research investment should be 

expected. Generally, the estimate of the value of information was on the order of hundreds of 

billions of dollars (around $0.5 trillion, roughly the GDP of Thailand or Sweden (IMF 2019)), 

depending on the accuracy of prediction, the curvatures of the damage and benefit functions, and 

the range of uncertainty. This value also reveals the potential cost of policy makers ignoring new 

scientific knowledge on the biological carbon pump, if the information were available. 

 The analytical framework is applicable to other types of climate uncertainties. Results of 

scientific research value studies would enable governments to prioritize research alternatives and 

funding levels. 
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List of Symbols 

W social welfare function 

U utility 

C annual consumption 

Y annual gross economic output less investment 

D annual climate damage 

N annual growth in carbon concentration in the atmosphere 

N0 stock of carbon in the atmosphere at the beginning of the year 

q annual carbon emission target 

L annual carbon sequestered on land 

ML annual carbon sequestered in ocean low estimate 

MH annual carbon sequestered in ocean high estimate 

z range of uncertainty in annual ocean carbon sequestration 

 stochastic variable associated with annual ocean carbon sequestration 

 coefficient of economic output function 

 coefficient of economic output function 

 coefficient of economic output function 

 coefficient of climate damage function 

 coefficient of climate damage function 
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Table 1: Parameters for simulations 

 

Parameter Description Value Unit 

ML  C sequestered in ocean low 

estimate 

2.3 10
15

gC/y 

MH C sequestered in ocean high 

estimate 

5.5 10
15

gC/y
 

L C sequestered on land  3 10
15

gC/y 

 output coefficient 8,000 $10
9
/(10

12
gC)


/y 

 output coefficient 
 

60,000 $10
9
/y 

 output coefficient 0.3, 0.4, 0.5 dimensionless 

 damage coefficient 2,000 $10
9
/(10

12
gC)


/y 

λ damage coefficient 1.8, 2.0, 2.2 dimensionless 
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Table 2: Incremental values with respect to precision and net present values of a 

hypothetical 20-Year Research Program  

(cost, benefit function baselines: γ = 0.4, λ = 2.0) 

Precision 

Incremental value 

 (current $billion)  

Incremental value 

 (discounted $ billion) 

a a b c d Year a b c d 

5 568.55 317.52 325.86 280.92 5 490.44 273.89 281.09 242.33 

6 20.28 16.19 21.07 17.36 6 16.98 13.56 17.65 14.54 

7 15.19 13.08 16.97 14.20 7 12.35 10.63 13.79 11.54 

8 11.70 10.84 14.03 11.88 8 9.23 8.55 11.08 9.38 

9 9.19 9.16 11.84 10.12 9 7.04 7.02 9.07 7.76 

10 7.32 7.86 10.16 8.75 10 5.45 5.85 7.56 6.51 

11 5.89 6.83 8.82 7.65 11 4.26 4.93 6.38 5.53 

12 4.78 6.00 7.75 6.76 12 3.35 4.21 5.44 4.74 

13 3.89 5.32 6.87 6.02 13 2.65 3.62 4.68 4.10 

14 3.18 4.75 6.14 5.41 14 2.10 3.14 4.06 3.57 

15 2.59 4.27 5.53 4.88 15 1.66 2.74 3.55 3.13 

16 2.11 3.86 5.00 4.43 16 1.31 2.41 3.12 2.76 

17 1.70 3.51 4.55 4.04 17 1.03 2.12 2.75 2.45 

18 1.36 3.21 4.16 3.71 18 0.80 1.88 2.45 2.18 

19 1.07 2.94 3.82 3.41 19 0.61 1.68 2.18 1.95 

20 0.82 2.71 3.52 3.15 20 0.45 1.50 1.95 1.75 

     
NPV 559.73 347.74 376.79 324.22 

 

Parameter a changing from 5 to 20 represents a reduction in coefficient of variation (standard 

deviation/mean) from 0.29 to 0.15. 

Parameters for the prior distribution: (a)  =  = 1; (b)  = 2,  = 3; (c)  = 3,  = 2; and (d)  

= 3,  = 3 (see Fig.2). 

Discount rate  = 0.03. 
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Table 3: Incremental values with respect to precision and net present values of a 

hypothetical 20-Year research program 

(cost, benefit function sensitivities: γ = 0.3, λ = 1.8) 

Precision 

Incremental value 

 (current $billion)  

Incremental value  

(discounted $billion) 

a a b c d Year a b c d 

5 400.05 227.63 235.60 202.98 5 345.09 196.35 203.23 175.09 

6 14.71 11.98 15.21 12.77 6 12.32 10.03 12.74 10.69 

7 11.22 9.77 12.36 10.53 7 9.12 7.94 10.05 8.56 

8 8.80 8.17 10.30 8.88 8 6.95 6.45 8.13 7.01 

9 7.05 6.95 8.76 7.62 9 5.40 5.33 6.72 5.84 

10 5.73 6.01 7.57 6.63 10 4.27 4.47 5.63 4.93 

11 4.72 5.26 6.62 5.84 11 3.41 3.80 4.78 4.22 

12 3.92 4.65 5.86 5.19 12 2.75 3.26 4.11 3.64 

13 3.29 4.15 5.22 4.65 13 2.24 2.83 3.56 3.17 

14 2.77 3.73 4.70 4.20 14 1.83 2.47 3.10 2.77 

15 2.34 3.38 4.25 3.81 15 1.50 2.17 2.73 2.45 

16 1.98 3.07 3.87 3.48 16 1.23 1.91 2.41 2.17 

17 1.68 2.81 3.54 3.19 17 1.01 1.70 2.14 1.93 

18 1.42 2.58 3.25 2.94 18 0.83 1.51 1.91 1.73 

19 1.20 2.38 3.00 2.72 19 0.69 1.36 1.71 1.55 

20 1.01 2.20 2.78 2.52 20 0.56 1.22 1.54 1.40 

     
NPV 399.21 252.81 274.49 237.14 

 

Parameter a changing from 5 to 20 represents a reduction in the coefficient of variation (standard 

deviation/mean) from 0.29 to 0.15. 

Parameters for the prior distribution: (a)  =  = 1; (b)  = 2,  = 3; (c)  = 3,  = 2; and (d)  

= 3,  = 3 (see Fig.2). 

Discount rate  = 0.03. 
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Fig. 1. Optimal Carbon Emission Target q* 

An increase in BCP sequestration leads to a reduction in climate damages (a downward shift of 

D to D’) at a new higher level of economic output (a right shift to q’
*
), and vice versa. 
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Fig. 2. Prior, likelihood, and posterior distributions (a= 5) 

Parameters for the prior (beta) distribution: (a)  =  = 1; (b)  = 2,  = 3; (c)  = 3,  = 2; and 

(d)  = 3,  = 3. 
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Fig. 3: Emission Target by Prediction  

The prior is uniformly distributed ( =  = 1); a = 20 in the likelihood function; and q represents 

emission target. 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

9

s

q
: 

G
tC

/y
e
a
r

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

40 
 

 

 

Fig. 4. Ex Ante Value of Information 

 

Parameter a in the horizontal axis represents the level of the accuracy of prediction. 

The plot depicts the value of research for all four priors shown in Fig. 2: ((a) (a)  =  = 1; (b)  

= 2,  = 3; (c)  = 3,  = 2; (d)  = 3,  = 3; and W is measured in billions of dollars 
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Fig. 5. Changing Value of Information with Respect to Model Parameters  

λ controls the marginal climate damage with respect to carbon emissions (q). 

 controls the marginal benefit of economic output with respect to carbon emissions (q). 

MH is the high-end estimate of BCP sequestration. 
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Fig. 6. Changing Carbon Emission Target with Respect to Model Parameters 

λ controls the marginal climate damage with respect to carbon emissions (q). 

 controls the marginal benefit of economic output with respect to carbon emissions (q). 

MH is the high-end estimate of BCP sequestration.  
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Appendix 1: A Brief Description of the DICE Model 

The DICE model
19

 is based on the theory of optimal economic growth (Ramsey 1928). 

The basic idea is to choose policies that maximize the social welfare, i.e., to maximize the sum 

of discounted social welfare over time t =1,, T: 

 𝑊 = ∑
𝑈[𝑐(𝑡), 𝐿(𝑡)]

(1 + 𝛿)𝑡

𝑇

𝑡=1

 (1) 

where U is the welfare function, c is per capita consumption, L is population, and δ is the pure 

rate of social time preference. Per capita consumption (c) equals net economic output (Q) minus 

investment (I) divided by population:    

 𝑐(𝑡) =
𝐶(𝑡)

𝐿(𝑡)
=

𝑄(𝑡) − 𝐼(𝑡)

𝐿(𝑡)
. (2) 

Net economic output (Q) is gross output net of damages and abatement: 

 𝑄(𝑡) = (𝑡)[1 − (𝑡)]𝑌[𝐴(𝑡), 𝐾(𝑡), 𝐿(𝑡)] (3) 

where Y is the gross economic production output which is a function of production technology 

(A), capital (K) which is a function of investment (I), and labor (L). The factor capturing 

damages associated with climate change ( < 1) is a function of global mean temperature (𝑇𝐴𝑇) 

which in turn is a function of carbon in the atmosphere (𝑀𝐴𝑇): 

  = 𝑓1{𝑇𝐴𝑇[𝑀𝐴𝑇(𝑡)]}. (4) 

The factor representing abatement (  1) is a function of emission reduction rate (𝜇):  

  = 𝑓2[𝜇(𝑡)]. (5) 

Thus, the effects of both climate damage and abatement are modeled as fractions of the gross 

output (Y), in other words, the gross output is reduced due to climate change.  Note that the 

                                                           
19

 For details, see Nordhaus (1993, 2010 and 2017; Nordhaus and Sztorc 2013). 
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emission reduction rate (𝜇) is a policy (control) variable in the model and determined by the 

optimization.  Society chooses the optimal level of emission reduction to maximize welfare. 

 Global total carbon emissions are the sum of emissions from economic production and 

land-use activities.  The emission from economic production is a function of output (Y) and 

emission reduction rate (𝜇).   

 𝑁(𝑡) = 𝑓3[𝑌(𝑡), 𝜇(𝑡)] + 𝑁𝐿𝑎𝑛𝑑(𝑡) (6) 

The carbon cycle is modeled as: 

 𝑀𝐴𝑇(𝑡) = 
01

𝑁(𝑡) + 
11

𝑀𝐴𝑇(𝑡 − 1) + 
21

𝑀𝑈𝑃(𝑡 − 1) (7) 

 𝑀𝑈𝑃(𝑡) = 
12

𝑀𝐴𝑇(𝑡 − 1) + 
22

𝑀𝑈𝑃(𝑡 − 1) + 
32

𝑀𝐿𝑂(𝑡 − 1) (8) 

 𝑀𝐿𝑂(𝑡) = 
23

𝑀𝑈𝑃(𝑡 − 1) + 
33

𝑀𝐿𝑂(𝑡 − 1) (9) 

where 𝑀𝐴𝑇, 𝑀𝑈𝑃, and 𝑀𝐿𝑂 denote carbon in the atmosphere, carbon in the upper oceans and 

biosphere, and carbon in the deep ocean, and s are coefficients. 

 The social cost of carbon (SCC) is calculated using the optimization results:  

 𝑆𝐶𝐶(𝑡) =
𝜕𝑊/𝜕𝑁(𝑡)

𝜕𝑊/𝜕𝐶(𝑡)
= −

𝜕𝐶(𝑡)

𝜕𝑁(𝑡)
 (10) 

where 𝜕𝑊/𝜕𝑁 (< 0) is the marginal welfare change with respect to carbon emissions, and 

𝜕𝑊/𝜕𝐶 is the marginal welfare change with respect to consumption. So the SCC is carbon 

emission impact in terms of a reduction in consumption. 
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Appendix 2: Results of Sensitivity Analysis 

Fig. 1A presents a similar set of plots in Fig. 2 under a more accurate prediction.  

Because of the improvement in precision, the variances of the likelihood and posterior pdfs are 

smaller than those of the other distributions in Fig. 2. 

Figs. 2A and 3A show the results of sensitivity analysis with respect to parameters  and 

.  Fig. 4A illustrates the effect of changing the high-end estimate of BCP sequestration (MH). 

Apparently, a positive relationship exists between the research value and the level of uncertainty, 

and the value is very sensitive with respect to z. 
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Fig. 1A. Prior, Likelihood, and Posterior (a = 20) 

(a)  =  = 1; (b)  = 2,  = 3; (c)  = 3,  = 2; and (d)  = 3,  = 3.  
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Fig. 2A: Effects of changing λ (marginal change in damage) 
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Fig. 3A: Effects of changing  (marginal change in output) 
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Fig. 4A: Effects of changing the range of uncertainty 
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Highlights 

 Ocean’s biological carbon pump (BCP) constitutes one of Earth’s most valuable 

ecosystem services. 

 The value of marine scientific research on BCP carbon sequestration is investigated.  

 The benefit of a 20-year scientific research program to narrow the range of uncertainty 

around the amount of carbon sequestered in the ocean is on the order of $0.5 trillion. 

 The value is affected by the accuracy of predictions, the convexities of climate damage 

and economic output functions, and the initial range of uncertainty.  
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