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ABSTRACT

The biological carbon flux from the ocean’s surface into its interior has traditionally been sampled by
sediment traps, which physically intercept sinking particulate matter. However, the manner in which a sed-
iment trap interacts with the flow field around it can introduce hydrodynamic biases, motivating the devel-
opment of neutral, self-ballasting trap designs. Here, the performance of one of these designs, the neutrally
buoyant sediment trap (NBST), is described and evaluated. The NBST has been successfully used in a number
of scientific studies since a prototype was last described in the literature two decades ago, with extensive
modifications in subsequent years. Originated at Woods Hole Oceanographic Institution, the NBST is built
around a profiling float and carries cylindrical collection tubes, a feature that distinguishes it from other
neutral traps described in the literature. This paper documents changes to the device that have been im-
plemented over the last two decades, including wider trap tubes; Iridium Communications, Inc., satellite
communications; and the addition of polyacrylamide gel collectors and optical sedimentation sensors.
Information is also provided with the intent of aiding the development of similar devices by other researchers,
including the present adaptation of the concept to utilize commercially available profiling float hardware.
The performance of NBSTs built around commercial profiling floats is comparable to NBSTs built around
customized floats, albeit with some additional operational considerations. Data from recent field studies
comparing NBSTs and traditional, surface-tethered sediment traps are used to illustrate the performance of
the instrument design. Potential improvements to the design that remain to be incorporated through future
work are also outlined.

1. Introduction

a. Scientific motivation

Much of the biological carbon flux from the sunlit,
euphotic zone of the ocean into the meso- and bathy-
pelagic zones is carried by sinking particles. These par-
ticles also compose an important source of energy for
deep food webs. Observational studies investigating the
biological origins, physical properties, and chemical
composition of this sinking material have traditionally
utilized sediment traps to collect samples of the settling
material. Sediment traps are devices that separate sinking
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particles in the ocean from the much more numerically
abundant nonsinking particles, by physically intercept-
ing them during their downward transit. The downward
sinking flux is quantified as the particles collected at a
given depth over a set time period in a trap sample tube
or funnel of fixed collection area. However, horizontal
ocean currents are typically orders of magnitude larger
than particle sinking velocities (Siegel and Deuser 1997).
Therefore, the manner in which a sediment trap inter-
acts with the flow field around it will influence how ac-
curately it separates sinking from nonsinking particles.
Important is that most sediment traps used in studies
reported in the literature are ‘‘surface tethered’’ to
drifting surface buoys or moored to the bottom, which
leads to potentially strong interactions with the flow
field, particularly in the upper mesopelagic (the upper
; 1 km of the ocean).

A variety of different, surface-tethered trap designs
for use in the upper mesopelagic have been employed
over the past few decades, each with its own set of ad-
vantages and disadvantages. These design considerations
have been reviewed elsewhere in detail (Buesseler et al.
2007b; McDonnell et al. 2015). The primary objective is
to quantitatively collect the passively sinking particle
flux while avoiding any collection of suspended parti-
cles or material transported vertically by zooplankton
‘‘swimmers.’’ A high trap aspect ratio prevents eddies in
the mouth of the trap from penetrating into the bottom
and disturbing the accumulated sample. Because the
sinking particle flux is spatiotemporally variable in
many systems, a secondary objective is to collect large
enough samples to average over this variability; how-
ever, this involves trade-offs with the trap’s aspect ratio.
Other trap features are meant to limit the creation of
these eddies in the first place by minimizing fluid flow
across the trap mouth. Such design features include
‘‘wind vanes’’ to point traps into the ambient flow,
gimballed collection tubes, and inclusion of a bungee in
the upper part of the trap mooring to dampen surface
motions. Swimmer exclusion is also difficult, and
techniques range from mechanical exclusion devices
such as the indented rotating sphere (Lee et al. 2009)
and the ‘‘labyrinth of doom’’ (Coale 1990), to manual
removal by the researchers after the sample has been
collected.

The variety of sediment trap designs currently in use,
and the complex, interacting factors that influence trap
performance, make comparisons between different de-
signs difficult to interpret. However, fluid flow around
the trap lies at the heart of most of the causes of
trap inaccuracies that have been put forward. A pri-
ori, elimination of flow around a sediment trap will
improve its collection characteristics. Here we document

two decades of improvements made to a family of
neutrally buoyant sediment traps (NBSTs) that have
been specifically designed to minimize effects associ-
ated with fluid flow across a cylindrical trap opening by
avoiding tethering the trap to a surface-drifting buoy.
Unlike surface-tethered traps (STTs), NBSTs are self-
ballasting, drifting at their sampling depths without any
surface expression. The Woods Hole Oceanographic
Institution (WHOI)-designed prototype of the NBST
was described by Valdes and Price (2000) and has since
undergone continuous improvements, while simulta-
neously being employed in a series of successful field
studies but without a corresponding, updated techni-
cal description. In recent years, studies of sinking
particulate matter in the ocean have come to rely on
increasingly sophisticated sensors, and platforms with
ever greater autonomy have been proposed. The
NBST will need to continue to evolve to meet these
needs in the future. The motivation of this paper is
to provide to the community the information neces-
sary to employ and expand the capabilities of future
NBSTs, as well as to provide a reference for re-
searchers interested in the details of NBSTs used in
prior studies.

b. Prior studies utilizing NBSTs and comparisons
with other trap types

The key studies in which NBSTs have been used and
updated over the last two decades are given in Table 1.
Prototype NBSTs were first tested at the Bermuda
Atlantic Time Series Study (BATS) site in 1997 and
1998. In these initial tests, the untethered traps collected
different amounts and compositions of particles com-
pared to codeployed surface-tethered, VERTEX-style
particle interceptor traps (PITs; Buesseler et al. 2000;
Stanley et al. 2004). After making a number of technical
improvements (described below), updated NBSTs were
employed in the Vertical Transport In the Global Ocean
(VERTIGO) program with field studies conducted in
2004 and 2005 at Station Aloha and K2 in the North
Pacific Ocean (Buesseler et al. 2007a). Again, the NBSTs
were deployed alongside arrays of surface-tethered
sediment traps and were found to collect with higher
efficiency under high flux conditions, although the cau-
ses for differences were ambiguous (Lamborg et al.
2008). A 3-yr intercomparison between NBSTs and the
standard surface-tethered PITs employed in the BATS
program was carried out between 2007 and 2010 to
better understand differences between the trap designs
under varying conditions of flow and particle flux
(Owens et al. 2013). In this study, fluxes to the two trap
types generally agreed within a factor of 2, but they
differed during periods of very low flux (when PITs
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undercollected relative to NBSTs) and when the PITs
were within the surface mixed layer. As part of a pro-
gram calibrating transmissometers on profiling floats
for use as ‘‘optical sediment traps’’ (OSTs; Estapa et al.
2017), NBSTs were again deployed alongside the stan-
dard BATS PITs during 5 months in 2013 and 2014.
They were modified to carry vertically mounted trans-
missometers (WETLabs C-Rover 2000) and poly-
acrylamide gel collectors in some trap tubes (Durkin
et al. 2015).

To our knowledge, three other neutral, self-ballasting
sediment trap designs have been implemented by
other research groups. The Particle Export Lagrangian
(PELAGRA) trap was designed at the National
Oceanography Centre (NOC), Southampton, United
Kingdom (Lampitt et al. 2008), and consists of an ar-
rangement of four conical traps with 0.5-m2 openings
around an APEX float (Teledyne Webb Research, Inc.),
with mechanically opening and closing collection jars.
Another neutral trap, the Lagrangian sediment trap
(LST; Sherman et al. 2011) was designed at the
Monterey Bay Aquarium Research Institute (MBARI)
with the specific goal of sampling sinking particulates at
depth below drifting icebergs. It also contained four
mechanically opening and closing conical traps (each
with a 0.08-m2 opening) arranged around a Sounding
Oceanographic Lagrangian Observer (SOLO; Davis
et al. 2001) float. A similar system was designed to
calibrate the optical sensors carried aboard the Carbon
Flux Explorer (CFE-Cal; Bourne et al. 2019). The
CFE-Cal device consisted of a high-aspect-ratio, conical
funnel leading to a rotating carousel of sample collection
bottles, all carried aboard a SOLO float. A comparison
deployment between the WHOI-designed NBST and the
NOC-designed PELAGRA (Baker et al. 2019, manuscript
submitted to Prog. Oceanogr.) suggested good corre-
spondence between the bulk compositions of particles
collected by each trap type, but lower total fluxes to
the PELAGRA traps (see section 3a, below). No other
intercomparisons have been attempted among the dif-
ferent neutral trap designs. However, several compari-
son studies of NBSTs and different STT designs have
been carried out. The results of these studies are sum-
marized in Table 2.

Of the four designs currently described in the litera-
ture, only the NBST and PELAGRA can accommodate
gel collectors, which have recently become important
tools for quantifying sinking particle size distributions,
morphologies, and biological identities (Ebersbach and
Trull 2008; McDonnell and Buesseler 2010, 2012; Durkin
et al. 2015; Flintrop et al. 2018). Only the NBST carries
cylindrical collection tubes, whose vertical walls minimize
hydrodynamic effects as well as the risks of particleT
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aggregation, adhesion, and concentration around collec-
tion jar edges (problematic for gel traps) that are inherent
in conical trap designs. To date, none of these four trap
designs can easily be constructed or deployed except
by their originating institutions, in spite of the fact that
the PELAGRA and NBST are now being deployed as
part of large, multiinstitutional studies of the biological
pump (e.g., Siegel et al. 2016; Sanders et al. 2016). With
this manuscript, our goal is to provide an updated tech-
nical description of the WHOI-designed NBST, covering
all changes since Valdes and Price (2000) last described a
prototype of the instrument. We include the latest shift of
the NBST design to the commercially available APEX
float platform, which we hope may allow other labora-
tories to implement their own NBSTs of similar design.

c. Original prototype NBST as described by Valdes
and Price (2000)

The original NBST described by Valdes and Price
(2000), a prototype of the current version, is summarized
here. The prototype NBST (protoNBST) consisted of a
cylindrical hull 11 cm in diameter by 128 cm long,
which supported four VERTEX-style cylindrical sedi-
ment trap tubes (7.5 cm in diameter by 66 cm long;
Knauer et al. 1979) with lids attached via elastic cords.
Like most profiling floats, active buoyancy control was
achieved by pumping oil into and out of the rigid alu-
minum hull into a flexible, external bladder, thereby
changing the float’s volume while maintaining constant
mass. Unlike the later floats used for the NBST (further
described below), the protoNBST had a 12-cm3 volume
range, sufficient only to fine tune its density near the
target depth, and required extraordinarily careful bal-
lasting prior to deployment. A burn wire, activated at the
end of a 2–5-day deployment, released a 2-kg drop weight
and allowed the trap tube lids to close. The buoyancy
engine, burn wire, pressure sensor, and Argos commu-
nications were controlled by a Tattletale 4 datalogger
(Onset Computer, Inc.). The protoNBST had a mass in air
of approximately 16kg and carried battery packs sufficient
for five missions of approximately 5 days in length.

2. Current NBST models

a. SOLO-based NBST

1) DESIGN UPDATES

The first successful deployments of the protoNBST in
1997 were accompanied by a number of ‘‘lessons learned’’
(Valdes and Price 2000) that led to immediate changes
to the NBST’s design, prior to its use in larger field
programs. The hull was changed from the original

prototype version to the SOLO hull and buoyancy en-
gine (Davis et al. 2001), which had a volume range of
about 200 cm3 and a pneumatic air system with a sleeve
bladder, and which provided additional buoyancy at the
surface (Fig. 1). These changes permitted the elimina-
tion of the 2-kg drop weight, which had been required
by the protoNBST for it to resurface. However, even
with the larger buoyancy capacity, the elimination of
the drop weight required careful ballasting for the ex-
pected in situ density profile prior to deployment in each
new field setting. The SOLO-NBST utilized a custom-
ized top cap assembly for the float, which has evolved
over time to permit addition of sensors and changes in
communications hardware (below).

Another early change was the replacement of the
four 7.5-cm-diameter VERTEX-style trap tubes with
five 12.7-cm-diameter, 70-cm-long tubes (Lamborg
et al. 2008; Fig. S1 in the online supplemental material).
The new tube design, still in use at present with small
modifications, addressed the need for larger sample
collection areas to better constrain the large variabil-
ity in particle flux at small scales (Buesseler et al. 2000).
The tube bodies are constructed of polycarbonate, with
ultrahigh-molecular-weight polyethylene (UHMW-PE)
lids and bottoms made of UHMW-PE or, more recently,
high-density polyethylene (HDPE) (see below). The
bottoms terminate in a polyvinyl chloride (PVC) ball
valve to permit sample collection without disassembly of
the tube. Lids are attached with silicone rubber elastic
cord running down the center of the tube and anchored to
a polycarbonate anchor bar extending across the tube
interior (Fig. 2; supplemental Fig. S1). In SOLO-NBSTs
from the mid-2000s, a retracting-pin mechanism held the
trap lids open via monofilament lanyards at the start of a
deployment and released the lanyards so that the tension
in the elastic cord would pull the lids closed prior to
the SOLO-NBST resurfacing. The retracting pin was
prone to fouling and was replaced with a burn-wire release
in 2010. In this present configuration, the lanyards from the
tube lids are attached to the corroding burn-wire loop us-
ing cable ties. Tubes also have polycarbonate baffles near
their mouths to minimize turbulent eddies entering the
traps and to exclude large swimmers. Baffles are 1 in.
(2.54cm) thick and have openings 3/8 in. (0.953cm) in di-
ameter (Lamborg et al. 2008). Three PVC snap rings se-
cure the elastic cord’s anchor bar and baffles in place inside
the tubes. Tube bottoms were originally attached to the
tube bodies with a face seal and four screws that threaded
directly into the polycarbonate (Fig. 1). Over time the
UHMW-PE tended to deform around the attachment
points, so the most recent design employs a radial seal be-
tween the tube bottom and body, along with a monofila-
ment Ortman key-and-groove connection. Tube bottoms
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are also now cut from HDPE, which has a lesser tendency
to creep after machining (supplemental Fig. S1).

Tubes (and, more recently, external sensors) are se-
cured to the NBST by locking into a set of upper and
lower tube support plates (Fig. 1). The plates rest on
top of two 3.81-cm-thick (1.5 in.) clamps that bolt

around the SOLO hull immediately above and below
the sleeve bladder. Both plates and clamps are cut from
sheets of UHMW-PE. Also bolted into the upper
clamp, over the hull’s top cap, is a lifting cage made
of welded titanium. A 7–8-m-long, 0.953-cm (0.375 in.)
polypropylene line is permanently spliced into the

FIG. 1. Annotated photograph of SOLO-NBST configured for deployment in April 2017
(photograph from C. Baker of the National Oceanography Centre, Southampton, United
Kingdom). Not visible in the photograph are clamps around the float’s hull, beneath the tube support
plates. Inset: Detail showing burn-wire loop and attachment of trap-lid lanyards via cable ties
(photograph from C. Durkin of Moss Landing Marine Laboratories, Moss Landing, California).
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top of the lifting cage and protected from chafing by a
sleeve cut from 1.27-cm-inner-diameter (0.5 in.) Tygon
tubing. A fully assembled SOLO-NBST, including all tubes
and trap support hardware, but not sampling fluids or
seawater in the trap tubes, has a mass of approximately
29 kg in air and weighs 1.7 kg in water.

Beginning in 2013, transmissometers (C-Rover 2000;
25-cm pathlength and 650 nm; WETLabs, Inc.) were

added to the SOLO-NBSTs to operate as optical sedi-
ment traps (Bishop et al. 2004; Bishop and Wood 2009;
Estapa et al. 2013, 2017, 2019a). This allows optical at-
tenuance fluxes to be calibrated with respect to the
chemical fluxes collected in the trap tubes and provides
a more time-resolved proxy for particle flux than can
be obtained from the bulk samples in the tubes (Estapa
et al. 2017). The controller samples the C-Rover at
a user-selected sampling interval (either every 15 or
30 min) and records the digital values from the sensor
over an RS-232 interface. The C-Rover 2000 trans-
missometer housing is designed for use with profiling
floats and other similar platforms, and adds a net
weight in water of approximately 100 g to the total.

2) BALLASTING AND OPERATION

Ballasting of a newly constructed NBST is conducted
in three steps. First, the water volume displaced by
the float and the precut, 2–3 m-long polypropylene
retrieval line (without external trap parts or sample
solutions) as a function of pressure is measured over
a range from 100 to 500 dbar, where 500 dbar is the
maximum deployment pressure of the instrument.
The displacement measurements are performed with
the float’s piston set approximately 50 cm3 short of
full retraction (the ‘‘ballast position’’). Second, the
weight in water of all external trap parts, sensors, and
sample solutions is determined to a precision of 6 2 g
in a 10-m-deep tank full of water with known tem-
perature and density, using a hanging load-cell balance.
The external parts are prone to retaining air bubbles,
and the materials from which they are constructed
have high coefficients of thermal contraction, so long
equilibration times and careful attention to releasing
entrapped air are necessary. The displacement of these
external parts, and their expected weight in water at the
deployment temperature and density, are computed
from the tank measurements. This includes a correc-
tion for the compressibility and thermal contraction of
parts made of polycarbonate, UHMW-PE, and HDPE
(Middaugh and Goudey 1993), whose separate dis-
placements are also measured in the tank. Last, dry mass
(contained in bottles of lead shot) is added or removed
from inside the hull to compensate for the predicted
in situ weight of the external parts. An additional 100–
150 g of stainless steel washers are bolted onto and
ballasted with the external parts to allow additional
small adjustments to be made in the field, without
opening the hull (Fig. 1).

The custom-designed controller based on the Onset
Tattletale datalogger has continued to evolve, but the
buoyancy control algorithm has remained fairly consis-
tent over time. The core mission steps are summarized

FIG. 2. Schematic illustrating assembly of trap parts around the
profiling float hull (in this case, an APEX float).
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here. Prior to launch, the SOLO-NBST is programmed
using terminal software on a computer connected via an
RS-232 interface. The clock is manually resynchronized
with time aboard the ship, and the desired date and
time of resurfacing are set. The user also enters the
target pressure and the desired data-logging interval
at depth (either every 15 or 30 min). The SOLO-NBST
will adjust its buoyancy until it achieves a pressure
within a certain margin around the target, referred to
as the ‘‘deadband.’’ The user selects this to be either
10 or 25 dbar. The user initiates the mission via the
serial interface and then disconnects, with final acti-
vation just prior to launch accomplished on deck
using a magnetic switch.

Final activation initiates a mission sequence that
continues until the resurfacing time is reached, or if
any of several failure conditions (pressure, battery, or
internal vacuum) are met. This sequence is illustrated
in a flowchart (Fig. S2 in the online supplemental ma-
terial). Initially, the controller retracts the piston to the
ballast position, and begins checking the pressure once
per minute until the NBST has reached a pressure of
30 dbar at which point it begins active buoyancy control.
If 80 min elapse and the SOLO-NBST is still trapped
near the surface, then active buoyancy control cycle will
begin regardless, to allow the controller to sleep and
conserve power. For the first 4 h, a pressure check is
executed every 15 min and ballast adjustments made
every 30 min; after 4 h autoballasting occurs once every
30 min (Fig. S3 in the online supplemental material).
In between pressure checks, the controller sleeps to
conserve power. During autoballasting, the controller
checks whether the SOLO-NBST is outside the target
pressure deadband, calculates the offset between its
actual and its target pressure, and if necessary, performs a
buoyancy correction that is proportional to the offset.
This autoballasting algorithm allows the SOLO-NBST
to settle at its target depth within a few hours of de-
ployment, without requiring routine user adjustments
at sea, even when there are ballasting errors of tens
of grams (Fig. 3), which was a primary goal identi-
fied early in prototype development (Valdes and
Price 2000).

When the mission reaches its programmed end time,
the controller activates a burn wire to release the trap
tube lids, which are pulled shut by their elastic cords.
The piston is then fully extended and the air bladder
is inflated when the SOLO-NBST reaches the surface
to provide additional height in the water. After the
SOLO-NBST surfaces, a GPS position is acquired and
transmitted at intervals to aid recovery, and at night
(determined by controller clock time) a flashing strobe
is activated. Argos communications were originally

used, with the GPS position and battery/vacuum status
encoded into the messages transmitted for recovery.
In 2013, GPS/Argos was replaced by a self-contained,
off-the-shelf GPS/Iridium (satellite) beacon (iCBN from
MetOcean Telematics), which the controller simply
power cycles at intervals while the NBST is awaiting
recovery. Recovery of the SOLO-NBST typically in-
volves careful vessel maneuvers to approach within
5–10 m of the device, at which point the floating poly-
propylene retrieval line is picked up with a pole or a
grapple and attached to a crane or winch to lift the trap
out of the water.

The current SOLO-NBST runs on three custom
alkaline battery packs, two of which drive the oil and
air systems, and the third of which powers the con-
troller. Together the two pump batteries provide a
capacity of 22 A h at a nominal 13.5 V. While the
SOLO-NBST is on a mission, the current draw on the
pump batteries is less than 10 mA when inactive, less
than 100 mA when retracting, and 400–600 mA when
extending. The controller battery provides a capacity
of 15 Ah at a nominal 10.5 V, supplies approximately
36–50 mA during active depth control or data acqui-
sition, and provides less than 150 mA while asleep.
The controller battery pack requires replacement
more frequently than the pump batteries, and typi-
cally is changed after about five missions or when the
voltage drops to 9 V.

b. APEX-based NBST

The discontinuation of the commercial Tattletale
line of dataloggers and the limited availability of new
SOLO-I floats required adaptation of the NBST design

FIG. 3. Example of pressure-vs-time data from a deployment
in which the SOLO-NBST was too heavy for its target depth
of 200 m.
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to work with a new controller and float. To allow broader
use of the design by more research groups, we decided
to utilize a commercial platform. Encouraged by the
success of the PELAGRA traps’ integration with APEX
floats (Teledyne Webb Research), we constructed
several new ‘‘APEX-NBSTs’’ around the same plat-
form in 2018. These have a broadly similar design to
the SOLO-NBST, with some key modifications to the
tube bottom attachments and retrieval aids. Although
we have not attempted this, the APEX float platform is
likely to allow NBST deployments to deeper depths
and higher pressures (up to 2000 dbar) with careful
ballasting. A detailed diagram and materials list for
the APEX-NBST are included in Fig. S1 of the online
supplemental material. In addition, the ballasting strategy
and mission programming requirements differ. These
changes are described below.

A stand-alone, programmable, expendable unit was
designed to fulfill the need for a standalone recovery
strobe, and a release mechanism for the trap lids on
the APEX-NBSTs (Fig. 4). These burn wire/strobes
are controlled by an Arduino Nano microcontroller.
Arduino was selected because the platform has plenty
of documentation and is trivial to program from any
computer with no extra equipment. Accurate timing
is achieved via a real-time clock to ensure that that
the recovery aid functionality would not be affected
were the Arduino to briefly lose power. The electronics,
battery, and strobe are potted within an acrylic tube
(25.4-cm length; 2.54-cm outer diameter) sealed at
both ends with ‘‘WaterWeld’’ epoxy putty. The strobe
consists of 16 high-intensity white light-emitting diodes
(LEDs) arranged annularly within the tube. Power (12V)
is supplied by four CR123A lithium primary batteries
connected in series. The burn-wire portion consists of a
loop of Inconel 625 wire acting as the anode, surrounded
by a brass washer as the cathode, and separated by a
plastic bushing. Both the LEDs and burn wire are actu-
ated by two overrated N-channel metal oxide semicon-
ductor field-effect transistors (MOSFETs). The burn
wire receives 5.3 W of power and takes roughly 20 min
to dissolve. Over 50 of the burn wires have been tested
in the field at depths typically ranging from 100 to 500m. In
one test, a unit performed successfully at 900m. During the
2018 Export Processes in the Ocean from Remote Sensing
(EXPORTS) deployments described below (section 3b),
failure of the units at a rate of roughly one in five was ob-
served initially and was traced to ineffective application of
WaterWeld putty after programming. Once this issue was
resolved, the failure rate dropped to zero.

In developing the APEX-based NBST, we aimed to
replicate the behavior of the original custom SOLO-
NBST controller as closely as possible using the APF-11

FIG. 4. Photograph of standalone burn-wire/strobe unit em-
ployed with APEX-NBSTs. Major components are annotated;
see the text for details. The unit housing is approximately
25 cm long.
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float controller (Teledyne Webb Research) and APEX
firmware. The APEX float’s standard mission cycle
and adjustable parameters are similar to many com-
mercially available profiling floats developed for use
in the Argo program. Here, we retain common terms
describing the parts of this cycle. For readers unfa-
miliar with the Argo float cycle, we briefly describe
the steps below and illustrate key time and depth in-
tervals in Fig. 5, while the flowchart in Fig. 6 illustrates
the mission sequence.

Ensuring rapid descent of the APEX-NBST from the
surface upon deployment required an additional hyper-
retract modification to the firmware, and the inclusion
of a timed, 20-min, 50-g drop weight to compensate for
entrapped air (the details are described later). The
modified APEX mission (Figs. 5 and 6, with configu-
ration details reproduced in the online supplemental
material) begins with manual activation by the opera-
tor and skips the predescent system testing, which must
be performed manually. The float immediately begins
the ‘‘ParkDescent’’ mission phase and at the same
time, enters ‘‘HyperRetract’’ mode, which retracts the
piston fully until the float descends past a preset pressure
(‘‘HyperRetractPressure’’) or until the ParkDescent
phase ends. ParkDescent continues until one of two
conditions is reached: either the platform reaches the
top of its target pressure window or the ParkDescent

phase times out. When either condition is satisfied, the
platform enters the ‘‘Park’’ mission phase. If the float
has not yet reached the target pressure window, it ad-
justs its buoyancy to the preprogrammed target. From
this point until the expiration of the Park phase, the
float checks its pressure on a fixed time interval and, if
outside the target pressure window for three consecu-
tive periods, performs a single buoyancy adjustment of
preset magnitude.

When the Park mission phase expires (‘‘DownTime’’),
the ‘‘UpTime’’ portion of the mission cycle begins
(Figs. 5 and 6). In parallel, the independently timed
burn-wire controller closes the sediment trap lids.
While APEX floats used in a typical Argo-like mission
(http://www.argo.ucsd.edu) would execute a deep de-
scent prior to ascending to the surface, we disable this
behavior so that the minimum amount of time elapses
between closure of the trap lids and the float’s ascent
to the surface. Conservatively, we budget an extra
hour for the burn wire to release the trap lids, and
then the float begins its ascent. When the float reaches
the surface, it begins its telemetry cycle. Prior to the
float’s initiation of telemetry, a new mission that acti-
vates ‘‘Recovery Mode’’ must be queued for trans-
mission. In Recovery Mode, the float inflates its air
bladder and activates a built-in strobe, while trans-
mitting its GPS location and a short status message.

FIG. 5. Schematic illustrating phases of the APEX mission cycle (purple) and key, con-
figurable pressure and time intervals that together are used to define the APEX-NBST
mission (orange and green). The solid black line shows the depth-vs-time path of the float,
beginning with predeployment and ending with recovery. Purple time intervals are labeled
with the phases of a typical mission cycle. The DownTime and UpTime time periods are
labeled in green. Orange lines show HyperRetract and Park depths and the Park deadband
margin.
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If the Recovery Mode activation is not transmitted in
time, or if the end of the UpTime period is reached
without the float resurfacing, then it will begin a new
cycle with the same mission.

The only modification that was made to the standard
APEX firmware for this sediment trap application was
the inclusion of the HyperRetract feature. Achieving
‘‘NBST like’’ behavior with the available, adjustable pa-
rameters is challenging but has been successful. Below,
we describe several caveats and lessons learned.

First, an APEX float carrying sediment trap hard-
ware can be expected to entrap a much larger volume
of air outside the pressure hull, upon initial deploy-
ment. The plastic trap parts have larger coefficients of
thermal contraction than the rest of the hull, and often
there is no way aboard a ship to maintain the ; 40 L of
seawater inside the trap tubes at in situ surface

temperature prior to launch. Therefore, even with the
HyperRetract functionality enabled, there is a strong
possibility an APEX-NBST will not immediately
sink upon deployment. Not only is this not ideal from a
sample collection standpoint, it is particularly problem-
atic if the ‘‘ParkDescentTimeout’’ value is too short, and
the float increases its buoyancy to ‘‘ParkDescentCount’’
while still at the surface. In such cases the trap may re-
main stuck at the surface for the entire mission cycle. To
circumvent this issue, we attach 50-g drop weights via a
dissolving link that is timed to release approximately
20min after deployment. Inexpensive, reproducible re-
sults have been achieved with partially predissolved,
fruit-flavored Life Savers candies.

A second concern is that, unlike the earlier SOLO-
based NBSTs with their customized controllers, the
autoballasting algorithm of an APEX float does not

FIG. 6. Flowchart summarizing the steps of an APEX mission as configured for APEX-NBST operation. Normal
APEX-NBST operation would not include repeated mission cycles, but this behavior is illustrated for complete-
ness. Sampled parameters are pressure P, temperature T, and beam attenuation c.

JUNE 2020 E S T A P A E T A L . 967

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/6/957/4947768/jtechd190118.pdf by M
BL/W

H
O

I Library user on 22 O
ctober 2020



allow for variable buoyancy adjustments that account
for how far the float is from its target pressure window,
or its vertical velocity through the water (Fig. 6).
Instead, the APEX firmware only allows buoyancy ad-
justments of a fixed magnitude, at fixed time intervals.
This unfortunately prevents the APEX-NBST from
automatically and quickly compensating for ballasting
errors or for differences between expected and actual
in situ density and temperature. Instead, the buoyancy
setting that corresponds to the target pressure must be
known fairly accurately in advance of deployment. To
achieve optimal results, each APEX-NBST therefore
requires a test deployment in the study area prior to the
first sample collection deployment. However, once the
correct buoyancy setting is determined, APEX-NBSTs
reach their target depths more quickly than do the
SOLO-NBSTs (see section 3b).

Despite these caveats, the commercial availability and
related likelihood of future support for the APEX plat-
form are attractive. The controller can power and log a
larger number of external sensors, introducing the possi-
bility of easy integration of other supporting optical and
acoustic particle sensors and imagers. Although the APEX
firmware is not optimized for this application, its behavior
is predictable. Most commercial profiling floats that are
utilized in the long-running, international Argo program
have firmware with similar behavior and adjustable pa-
rameters, meaning that the APEX-NBST approach could
conceivably be extended to many of these platforms.

3. Technical results from recent field programs

a. ‘‘Are all traps created equal?’’ Campaign

In April 2017 a field intercomparison of the most re-
cent SOLO-NBST iteration with PELAGRA traps of
NOC design was carried out at the Porcupine Abyssal
Plain Sustained Observatory (PAP-SO; 498N, 16.58W)
aboard the RRS Discovery. By working at the PAP-SO
site, the comparisons were made in a setting with
minimal horizontal advection, where hydrodynamic
biases were predicted to be small. Scientific results,
including detailed intercomparisons of laboratory
methods, as well as of sediment traps to radiochemi-
cal tracer methods, are presented in a separate pub-
lication (Baker et al. 2019, manuscript submitted to
Prog. Oceanogr.). The main finding in terms of sedi-
ment trap performance was that in the deployment
setting, conical trap collectors, even aboard neutrally
buoyant platforms, undercollected sinking particles
relative to cylindrical trap collectors, while particle
elemental composition appeared to be broadly consis-
tent across platforms.

Cylindrical trap tubes carried aboard surface-tethered,
drifting arrays seemed to overcollect slightly rela-
tive to identically configured and processed collectors
on neutrally buoyant platforms (Fig. 7), but the differ-
ence was less pronounced compared to the difference
with conical traps.

The relative current velocity past the surface-tethered
traps was measured by adding a current meter (Nortek
Aquadopp) just below the trap array. In the first of
two deployments, horizontal speeds past the STT
had a mean and standard deviation of 6 6 2 cm s2 1,
whereas, in the second, the mean and standard devi-
ation of the speeds were 12 6 4 cm s2 1. Canonically,
speeds less than 10 cm s2 1 are believed not to impact
trap collection efficiency based on laboratory flume
experiments (Gardner 2000; see discussion in Buesseler
et al. 2007b), but flow conditions are notoriously difficult
to monitor and control in the field, and effects are
entangled with other sources of uncertainty (i.e.,
swimmers, sample handling, size and density of sinking
particles). It is worth noting that even under the lower-
flow conditions of the first deployment, a fast-settling
particle with a vertical speed of 500 m day2 1 (0.58 cm s2 1)
would have had an approach angle to the trap mouth of

FIG. 7. Particulate organic carbon fluxes measured by STT and
identically configured tubes on NBSTs, processed using identical
laboratory techniques, and corrected for the influence of ‘‘swimmers’’
(zooplankton that actively swam into the traps). Each symbol is the
average of two or three tubes or, in instances in which replicate
NBSTs were deployed at the same depth, the average of four tubes
from that depth. Error bars are the standard deviation (N $ 3) or
range (N 5 2) of replicates. Black open circles are observations
from the EXPORTS North Pacific deployments, and red open
squares are from the ‘‘all traps’’ deployments. The solid black line
shows a 1:1 relationship. The dashed black line shows the type-II
linear regression with equation y 5 1.10 (6 0.08) 3 x 1 0.3 (6 0.1)
and R2 5 0.92.
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about 5.58 above the horizontal plane. Slower settling
particles and faster relative current speeds would only
exacerbate this. We observed the STT array to over-
collect relative to codeployed NBSTs (which should
experience almost zero relative current speeds) in both
deployments, and this was more pronounced for most
analytes in the second deployment. Bulk particulate
organic carbon (POC) flux was enhanced by 25% and
40% in the first and second deployments, while bulk
particulate inorganic carbon (PIC) flux was enhanced by
102% and 159%, respectively. Large foraminifera were
frequently observed in the traps in this setting and it
is possible that these denser, more heavily ballasted
particles accounted for the overcollection of PIC
by the STT.

b. EXPORTS

The EXPORTS program (Siegel et al. 2016) aims
to collect detailed observations of all processes com-
prising the biological carbon pump, in order to formu-
late better-performing, mechanistic models that can be
driven by satellite ocean color observations. The first of
the EXPORTS field campaigns was conducted at Ocean
Station Papa (508N, 1458W) in August–September of
2018 and involved multiple, simultaneous deploy-
ments of SOLO-NBSTs, APEX-NBSTs, and STT ar-
rays. Because the goal of this paper is to describe the

design and performance of the NBST on a technical
level, the scientific results of these deployments
will be presented in future publications. However,
the data from this deployment compose one of the
few comprehensive intercomparisons of neutral and
surface-tethered trap designs (along with the VERTIGO
study; Lamborg et al. 2008; Owens et al. 2013), and
so we summarize relevant aspects of that deploy-
ment, here.

The EXPORTS North Pacific study site was char-
acterized by weak mean flows, with stronger inertial
and tidal motions. Traps were deployed repeatedly
over a period of approximately one month, at loca-
tions following the mean circulation. Deployments
(summarized in Table 3 and Figs. 8 and 9) were carried
out three times, with each cycle referred to as an
‘‘epoch.’’ Two SOLO-NBSTs were always deployed
together at 95 m while four APEX-NBSTs were de-
ployed at 145, 195, and 330 m. The spatial separation
of the STT array from the NBST resurfacing positions
(Fig. 8) was presumed to have been driven by wind
or wave effects acting on the drifting buoy. The STT
array carried a current meter (Aanderaa AADI Seaguard)
at 510 m, just below the deepest set of sediment traps.
This provided observations of the relative current speeds
past the traps at that depth. Respectively, the first, second
and third epochs had low and relatively consistent

TABLE 3. Summary of EXPORTS sediment trap deployments.

NBST model
and serial no. Epoch Depth (m)

Date/time
in (UTC)

Date/time
out (UTC)

Lat
in (8N)

Lon
in (8E)

Lat
out (8N)

Lon
out (8E)

SOLO-NBST-20 1 96 2023 15 Aug 2018 0317 21 Aug 2018 50.1138 2 145.0718 50.3038 2 145.0678
SOLO-NBST-200 1 97 2037 15 Aug 2018 0327 21 Aug 2018 50.1129 2 145.0712 50.2934 2 145.0547
APEX-NBST-303 1 159 2011 15 Aug 2018 0926 21 Aug 2018 50.1146 2 145.0722 50.2283 2 145.0248
APEX-NBST-302 1 207 2000 15 Aug 2018 0917 21 Aug 2018 50.1155 2 145.0727 50.2173 2 145.0162
APEX-NBST-304 1 209 1951 15 Aug 2018 0948 21 Aug 2018 50.1163 2 145.0731 50.2272 2 145.0223
APEX-NBST-305 1 342 1931 15 Aug 2018 0923 21 Aug 2018 50.1176 2 145.0739 50.2323 2 145.0325
STT 1 95; 145; 195; 330; 500 1753 15 Aug 2018 0840 21 Aug 2018 50.1223 2 145.0754 50.3931 2 145.0172
SOLO-NBST-20 2 101 1820 24 Aug 2018 0224 28 Aug 2018 50.4481 2 145.0763 50.5760 2 145.0643
SOLO-NBST-200 2 103 1830 24 Aug 2018 0225 28 Aug 2018 50.4485 2 145.0819 50.5597 2 145.0681
APEX-NBST-303 2 152 1807 24 Aug 2018 0255 28 Aug 2018 50.4477 2 145.0705 50.5095 2 144.9984
APEX-NBST-302 2 199 1742 24 Aug 2018 0321 28 Aug 2018 50.4468 2 145.0590 50.4998 2 145.0132
APEX-NBST-304 2a 203 1755 24 Aug 2018 1727 1 Sep 2018 50.4471 2 145.0624 50.5530 2 144.8792
APEX-NBST-305 2 337 1730 24 Aug 2018 0410 29 Aug 2018 50.4467 2 145.0574 50.4832 2 145.0080
STT 3 105; 155; 205; 340; 510 1655 24 Aug 2018 0838 29 Aug 2018 50.4538 2 145.0501 50.4898 2 144.8312
SOLO-NBST-20 3 104 1817 31 Aug 2018 0223 5 Sep 2018 50.6131 2 144.8706 50.6726 2 144.8052
SOLO-NBST-200 3 104 1825 31 Aug 2018 0224 5 Sep 2018 50.6149 2 144.8722 50.6667 2 144.7839
APEX-NBST-303 3 147 1808 31 Aug 2018 0254 5 Sep 2018 50.6122 2 144.8698 50.6043 2 144.7733
APEX-NBST-302 3a 147 0352 5 Sep 2018 1747 9 Sep 2018 50.6043 2 144.7733 50.5698 2 144.6900
APEX-NBST-304 3 198 1800 31 Aug 2018 0253 5 Sep 2018 50.6112 2 144.8687 50.6036 2 144.8013
APEX-NBST-305 3a 200 0357 5 Sep 2018 1817 9 Sep 2018 50.6036 2 144.8013 50.5590 2 144.7167
SOLO-NBST-20 3 334 1747 31 Aug 2018 0319 6 Sep 2018 50.6083 2 144.8663 50.6142 2 144.7640
STT 3 105; 155; 205; 340; 510 1658 31 Aug 2018 0817 6 Sep 2018 50.5996 2 144.8657 50.4910 2 144.7179

a The trap completed more than one mission cycle (see text). In epoch 3 these are shown on separate lines since the floats resurfaced and
transmitted positions after both cycles.
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horizontal current speeds at the STT array of 6 6 3, 4 6 2,
and 6 6 3 cms2 1.

As in the ‘‘All traps’’ study (section 3a), we observed
the surface-tethered traps to overcollect POC slightly
relative to codeployed NBSTs (Fig. 7). A type-II linear
regression of POC fluxes to STTs against fluxes to
NBSTs in both studies, gives a slope of 1.10 6 0.08 and
an intercept of 0.3 6 0.1. This slight overcollection by
surface-tethered relative to neutral traps, and the
nonzero intercept noted above, are consistent with
the observations of Buesseler et al. (2000), Owens
et al. (2013), and Baker et al. (2019, manuscript sub-
mitted to Prog. Oceanogr.). In a 3-yr time series study,

Owens et al. (2013) found that NBSTs occasionally
measured near-zero fluxes while STTs did not, and
hypothesized that this might be due to the larger
volumes of water that flush through tethered traps.
However, there was no apparent dependence of the
degree of overcollection by STTs on the relative
current speed, consistent with prior intercomparisons
(Lamborg et al. 2008).

For the most part, the NBSTs rapidly achieved and
then maintained their sampling depths, and resurfaced
as expected (Fig. 9). However, some exceptions and
observations are highlighted in Fig. 9 and discussed here.
Several of the NBSTs were briefly tipped sideways
during deployment in the wash behind the ship at the
start of epoch 2. Subsequently, one APEX-NBST failed
to resurface as expected on 28 August 2018, but instead
resurfaced four days later on 1 September 2018 (Fig. 9).
After recovery, an analysis of the buoyancy adjustments
made by the float indicated that it was approximately
50 g heavier than expected during the period from
24 until 30 August, suggesting that the 50-g drop weight,
attached with an excess of wire, had become entangled
during deployment and failed to release as expected
during the initial descent. While rough deployments
should always be avoided if possible, the episode re-
inforced the need to carefully redesign the drop-weight
attachment system to minimize the possibility of en-
tanglement. Communications problems arising from
a reset of the Iridium short-burst data transmission
queue finally led to two traps repeating their missions
at the end of epoch 3 (Fig. 9).

Overall, the performance of the newer APEX-NBSTs
was similar to that of the earlier SOLO-NBST design.
As with any new oceanographic field equipment, there
are many potential operational improvements, including
float firmware modification to allow more flexible and
rapid buoyancy adjustments, local data offload, and
a built-in burn-wire release. However, in scientific
terms the new NBST design is comparable to the
older SOLO-NBST, and it has the advantage of being
adaptable by other research groups.

4. Conclusions

Autoballasting, neutrally buoyant sediment traps
are an important tool in studies of the biological
carbon pump. Sediment traps in general remain the
only way to return samples of sinking material for
the increasingly detailed chemical, biological, and
optical analyses that are now being employed to tease
apart the processes that constitute the biological
pump. Only neutrally buoyant traps are largely free
from hydrodynamic biases that can arise when traps

FIG. 8. Deployment and resurfacing positions (circles and
triangles, respectively) of sediment traps deployed during the
EXPORTS field campaign. The colors represent sampling cycle
(‘‘epoch’’) and trap drift depth. The small labels refer to trap
serial number and correspond to Table 3. The track of the STT
buoy is shown in gray and extends over the same time period as
the NBST deployments.
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are tethered in a water column with significant ve-
locity shear. The effects on flux collection of fluid flow
around tethered traps are rarely simple or linearly
dependent on relative flow speed (Buesseler et al. 2007b;
Lamborg et al. 2008; Owens et al. 2013; Baker et al. 2019,
manuscript submitted to Prog. Oceanogr.) but numerous
studies illustrate potential effects that can be magnified
by nonzero flow at the trap mouth, and neutral traps
offer a conceptually straightforward way of removing this
driver (Buesseler et al. 2007b, and references therein).
We have presented a detailed description of two decades
of improvements to the WHOI-designed NBST, as well
as its migration to a commercially available profiling float
platform, in the hopes that the technology (or new, re-
lated variants) will become more broadly accessible to
the scientific community. Two recent studies comparing
neutral and surface-tethered platforms carrying identi-
cal trap tubes and utilizing identical sample processing
methodologies are summarized here, and show that
surface-tethered traps seem to overcollect slightly under
low-to-moderate relative flow regimes. Additional de-
ployments under high velocity shear conditions will be
needed to illustrate relative effects of stronger currents
at the mouths of surface-tethered traps. Also, additional
improvements to the APEX-NBST are still desirable,

primarily the addition of more flexibility to the au-
toballasting routine so that ballasting errors can be
compensated automatically during float operation.
Expansion of NBST capabilities might include addi-
tion of an expanded optical sensor suite for charac-
terizing suspended particle properties.
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FIG. 9. Pressure-vs-time plots for all NBST deployments during the 2018 EXPORTS
program. Horizontal dotted lines indicate target drift depths. Colors correspond to epochs
and are the same as in Fig. 8, and shading indicates NBST model, with lighter colors showing
SOLO-NBSTs. The small labels refer to trap serial number and correspond to Table 3.
During the first two deployment cycles, there were two NBSTs at 95 m and two at 195 m, and
during the third cycle there were two NBSTs at 95 m. Labels ‘‘a’’ and ‘‘b’’ denote events in
which the float’s compensation for changes in entrapped air or entangled drop weights (event
‘‘b’’ and as described in the main text) resulted in rapid changes in depth. Label ‘‘c’’ denotes
instances in which floats did not receive recovery missions upon initial resurfacing and de-
scended for a second mission cycle.
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